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1 Introduction

Perhaps the most tested model in asset pricing is the Sharpe (1964), Lintner (1965), and

Black’s (1972) capital asset pricing model (CAPM). However, the empirical evidence support-

ing the model is far from conclusive. For example, Fama and French (1992) has shown that

the systematic risk measure beta from the CAPM is incapable of explaining cross-sectional

differences of individual stocks’ expected returns. Such evidence seems at odds because the

CAPM beta is still widely used both in practice and in most empirical studies. In this study,

we take another look at the evidence and provide a new perspective by arguing that beta

reversal among a small group of stocks is the culprit for the failure of the CAPM beta, espe-

cially in cross-sectional studies. With a simple control for such a beta reversal effect, we are

able to restore the positive relation between the conventional measures of beta and expected

returns of individual stocks.

In a typical empirical study in asset pricing, all individual stocks are equally treated from

a statistical perspective. Accordingly, we begin our investigation from examining whether

the failure of the market beta in cross-sectional studies is pervasive or limited to certain

stocks. There are two pieces of evidence from existing studies that motivate us to take this

unconventional approach and may hold a clue in understanding the seemingly inconsistency

between the cross-sectional evidence documented in Fama and French (1992) and the time-

series evidence in Fama and French (1993). The first piece of evidence is from Fama and French

(1992) who show that stocks with large beta estimates have relatively low expected returns,

which result in a flat relation between beta and future returns. This result can be interpreted

as suggesting that. The second piece of evidence is provided by Ang, Hodric, Xing, and

Zhang (2006) who document that stocks with large idiosyncratic volatilities tend to have low

future returns. These two pieces of evidence imply that stocks with both high idiosyncratic and

systematic risks may have obscured the true beta-return relation in a short-run. We, therefore,

conjecture that beta fails mostly among stocks with certain characteristics, and investigate

why these stocks behave abnormally. By doing so we are able to propose simple but practical

approaches to restore the explanatory power of the market beta, instead of building a more
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complicated model than the CAPM model or introducing alternative factors.1

A simple way to demonstrate the “limited” failure of the market beta is to show a positive

beta-return relation after excluding a small group of stocks with certain characteristics. As

an exercise, we exclude 10% of the stocks with the largest beta and idiosyncratic volatility

simultaneously from our original sample (accounting for 5% of the market capitalization).

When the remaining stocks are sorted into 25 portfolios according to their size and book-to-

market measures, portfolio returns are positively related to their beta estimates. One possible

cause for this finding is that measures of the market beta of some stocks tend to reverse despite

the CAPM holds period by period.2 The adverse effect of beta reversal could be strong enough

to mask any cross-sectional evidence supporting a positive risk-return relation implied by the

CAPM particularly when beta estimates are noisy at the same time.

Although beta reversal may be a short-term phenomenon, its effect is very different from

the error-in-variables (EIV) bias (see Fama and MacBeth, 1973) that is well-understood in

the literature. In fact, to reduce the risk premium estimate from cross-sectional regression

analysis by 80%, estimation errors must be four times as large as the cross-sectional variation

in beta. This is highly unlikely as echoed in Fama and French (1992) when using portfolio

beta. Nevertheless, we show that estimation errors can interact with the limited beta reversal

to create a much large effect that prevents us from finding a positive beta-return relation.

Our simple exercise also reveals that such a beta reversal effect can be controlled since

it occurs largely among stocks with both large market beta and high idiosyncratic volatility.

Without excluding any stocks from the whole sample, we can take into account the beta

reversal effect in three different ways in a conventional cross-sectional regression model (see

Fama and French, 1992). In particular, the coefficient estimate of the beta variable from

the Fama-MacBeth regression analysis is very significant and close to the sample market

risk premium as predicted by the CAPM. Moreover, all previously documented firm-level
1We refer to the CAPM in a loose sense by focusing on the explanatory power of the market beta.
2In cross-sectional studies, we usually try to tie beta to future returns. In a normal case, when the current

beta is high, future beta will continue to be high, which in turn results in high future returns according to the
CAPM. However, if future beta of these stocks tends to reverse, their realized returns will be low on average
even when the CAPM holds each period. Of course, the failure of the market beta could also be a result of the
covariance between the time-varying risk and time-varying beta. We assume away this possibility since such a
covariance risk is too small as shown by Lewellen and Nagel (2006).
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variables such as size, book-to-market ratio, Amihud illiquidity measure, momentum, and

return reversal do not subsume the market beta’s predictive power for expected returns as

long as the beta reversal effect is controlled for. These results are very robust to a range of

alternative specifications and variable definition.

Given the significant effect of beta reversal, it is important to understand why beta of

certain stocks with both high idiosyncratic and systematic risks tends to reverse in the future.

Different from mean-reversion in beta, which might be driven by changes in the economy-wide

risks that develop over a longer horizon and happen to all stocks, beta reversal is likely to

occur over a short-horizon and is limited to stocks with certain characteristics. We accordingly

investigate three possible channels: the wealth effect, the earnings announcement effect, and

the growth option realization. First, on the wealth effect, if some investors prefer stocks with

large idiosyncratic volatility (see Han and Kumar, 2013, and Falkenstein, 1996), increases in

the holdings of these stocks will drive up their weights in the market portfolio. These stocks

will then covary more with the market portfolio by construction as pointed out by Cochrane,

Longstaff, and Santa Clara (2008). We do find that changes in individual stocks’ idiosyncratic

volatilities are positively related to changes in their market capitalizations, which in turn are

related to changes in their beta estimates. More important, these changes tend to reverse

in the future. Second, beta reversal might be related to earnings announcement events as

suggested by Patton and Verardo (2012). A typical stock’s beta tends to increase before

earnings announcement because of shared uncertainty with other stocks and subsequently

revert when uncertainty resolves. We also find that controlling for earnings announcement does

significantly affect the beta reversal effect. Finally, when a firm realizes its growth options, its

beta tends to drop because asset in place are less riskier than growth option (see Cooper and

Priestley, 2011, Da, Guo, Jagannathan, 2012, and Grullon, Lyandres, and Zhdanov, 2012).

We do find that small firms, growth firms, and young firms tend to experience beta reversal

more frequently than other types of firms, which is consistent with the real growth option

mechanism if these firms are more likely to realize their growth options.

We contribute to the asset pricing literature in three important ways. First, different from

existing studies, we actually show that the fundamental relation between the market beta
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and the expected return holds well, except for a small group of stocks. Second, we document

that beta of high risk stocks tends to reverse, which obscures the whole risk-return relation

in a conventional test. Consistent with the mechanism proposed above, we further show that

beta reversal is predictable via the interaction between realized idiosyncratic volatility and

beta. Consequently, we propose three simple approaches to restore the cross-sectional beta-

return relation for all stock–the direct control approach, the predicted beta approach, and the

adjusted beta approach. Finally, the mechanism of beta reversal reconciles the contradictory

evidence between the large time-series explanatory power of the market factor and the market

beta’s inability to differentiate future returns across individual stocks. When the CAPM holds

period by period, the contemporaneous correlation between market factor and individual

stocks’ returns are large, while a large current beta may drop and result in a lower future

return on average. Although beta reversal is not pervasive and might occur among different

stocks over time, such a limited reversal interacted with noises in the beta estimates is able

to severely distort the conventional cross-sectional tests.

Our study is related to several recent papers on adjusting the CAPM beta. For example,

when beta varies over time, its estimate based on historical returns may not contain sufficient

forward-looking information, which could affect its ability to predict future returns. Buss and

Vilkov (2012) propose using the option-implied beta to capture forward-looking information.

Over a shorter sample period from 1996 to 2009, they find a positive beta-return relation. In

the context of our framework, we show that the success of their approach can be contributed

largely to sample selection. Due to the availability of option data, their sample does not

include stocks that are likely to reverse. In fact, our reversal-adjusted beta takes away most

of the explanatory power of the option-implied beta. Another possibility for observing low

returns on stocks with high beta is suggested by Frazzini and Pedersen (2013). They argue that

margin constrained investors tend to bid up high-beta stocks’ prices which consequently have

low returns. To test the idea, they construct a so called “Betting-Against-Beta” (BAB) factor

by longing on low beta stocks and shorting on high beta stocks and examine the explanatory

power of the factor. Despite some similarity between their BAB factor and our beta-reversal

factor, the two factors are quite different from both theoretical and empirical perspectives.
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At the very least, beta reversal concentrates on a much smaller sample of stocks than the

stocks affected by the BAB factor. The correlation between their BAB factor and our beta

reversal factor is only 43%. Moreover, we show that the BAB factor is unable to adjust the

conventional beta estimates to restore their cross-sectional explanatory power.

The literature on idiosyncratic risk is also relevant to our study. Although Ang, Hodrick,

Xing, and Zhang’s (2006) finding on idiosyncratic volatility motivates our study, a simple con-

trol for idiosyncratic risk does not restore the explanatory power of beta. Moreover, whether

the negative relation between idiosyncratic volatility and future return is due to return rever-

sal (Huang, Liu, Rhee, and Zhang, 2010), learning model parameters (Pastor and Veronesi,

2009), or the gambling effect (Bali, Cakici, Whitelaw, 2011) bears no consequence on the mar-

ket beta itself. In contrast, we take a step further by examining how idiosyncratic volatility

affects the role of beta, and in turn alters future returns.3 Another related study by Ang

and Chen (2007) utilizes an econometrics approach to explicitly model the dynamics of the

market risk premium, market volatility, and asset beta. They find that the time-varying beta

estimates explain the return differences between value and growth stocks. In contrast, we rely

on a much simpler approach and are able to restore the beta-return relation once the beta

reversal effect is controlled for. Finally, researchers find that idiosyncratic volatility is related

to a firm’s growth options (see Bernardo, Chowdhry, and Goyal, 2007, Cao, Simin, and Zhao,

2008, Da, Guo, and Jagannathan, 2011, and Johnson, 2004), which is one of the channels for

beta reversal explored in our study.

The rest of the paper proceeds as follows. In the next section, we first motivate the idea

of beta reversal and its effect on asset prices. We also propose three possible channels that

could cause such a reversal, and outline strategies to detect and control for beta reversal. In

Section 3, we describe our data source and discuss the construction of variables used in our

study. For consistency, we compare the summary statistics of our variables with those used in
3When using alternative measures of idiosyncratic risk, such as the conditional measure (Fu, 2009) or

the portfolio measure of idiosyncratic risk (Malkiel and Xu, 2003), others find that idiosyncratic volatility is
positively related to future returns, which suggests a pricing effect for idiosyncratic risk. Cao and Xu (2009)
further point out that the priced idiosyncratic risk is a relatively small component in the total idiosyncratic
risk due to the diversification effect. In contrast, mispricing is therefore a first order effect in short-run. We
accordingly focus primarily on the realized idiosyncratic volatility measure.
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the literature. Our empirical results presented in Section 4 started from portfolio analysis and

followed by cross-sectional regression results. We contrast our study with other related work

and support the possible mechanisms of beta reversal with some further evidence in Section

5. A robustness analysis is carried out in Section 6. Section 7 concludes.

2 Theoretical Motivation

Since the idea of beta reversal is new, we first motivate the idea and its impact on asset prices

from a theoretical perspective. We then offer three possible channels through which beta

reversal can occur. To control for beta reversal in testing the beta-return relation, we propose

three empirical strategies.

2.1 Motivating Beta Reversal

Fama and French’s (1992, 1993) results are both surprising and controversial. For example,

some researchers believe that both the size and the book-to-market variables are either not

robust or subject to certain biases.4 Regardless of the importance of these arguments, the

beta variable continues to be insignificant in explaining cross-sectional return differences.

Other researchers have attempted to patch the CAPM with different model structures. One

example is the idea of time-varying risk and risk premium of Merton (1976) due to changes in

investment opportunities. In such a framework, investors demand additional compensation for

the covariance risk between time-varying risk and market risk premia even when a conditional

CAPM model holds perfectly (see Jagannathan and Wang, 1996). However, from an empirical

perspective, Lewellen and Nagel (2006) show that such a covariance risk is too small to account

for the large deviation from the CAPM.

While the idea of time-varying risk could still be quite useful over a longer horizon, beta

might change for reasons other than time-varying risk in short-run, especially for some stocks.

In such a case, the CAPM relation may continue to hold period-by-period in a first order, yet
4An incomplete list includes Ang and Chen (2007), Barber and Lyon (1997), Daniel and Titman (1997),

Daniel, Titman and Wei (2001), Dijk (2011), Horowitz, Loughran and Savin (2000), Kim (1997), Knez and
Ready (1997), Kothari, Loughran (1997), Shanken, Sloan (1995), Shumway (1997), and so on.
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we are unable to detect such a relation in an empirical test. This could happen when future

realized returns are used as proxies for conditional expected returns of individual stocks in

cross-sectional tests as proposed by Fama and MacBeth (1976).5 Over such a short horizon, a

stock with large current beta might actually have a low future return if its beta reverses, which

means weak evidence on the beta-return relation from a cross-sectional regression perspective.

This idea is motivated by Fama and French (1992) who find that stocks with large beta tend to

have low future returns, and Ang, Hedrick, Xing, and Zhang (2006) who find that stocks with

high idiosyncratic risks also tend to have low future returns. To verify these observations and

to see if beta reversal is pervasive, we sort all stocks first into five groups according to their

beta estimates, and then into five sub-quintiles based on their realized idiosyncratic volatility

measures (IVd) defined in Section 3.2. Results are reported in Table 1.

Insert Table 1 Approximately here

At a first glance, we observe some systematic patterns between portfolio returns and id-

iosyncratic volatilities. For example, portfolio returns seem to increase with their idiosyncratic

volatilities when beta estimates are relatively low, consistent with Merton (1987) and Malkiel

and Xu’s (2002) arguments. For extremely large beta portfolios, the pattern is reversed as

shown in the last column of Table 1, consistent with Ang et. al.’s (2006) finding of a nega-

tive relation between idiosyncratic volatility and future returns. In fact, the return difference

between the high and the low idiosyncratic volatility portfolios is −0.70% and is statistically

significant. For median beta portfolios, the relation between return and idiosyncratic volatil-

ity is hump-shaped. This is consistent with Bail et. al.’s (2007) finding of a non-monotonic

relation between idiosyncratic volatilities and portfolio returns.

On the beta dimension, the beta-return relation holds relatively well except for portfo-

lios with both large idiosyncratic volatility and large beta. For example, when idiosyncratic

volatility is relatively low, portfolio returns increase with their beta monotonically. In fact,

the difference between the high and the low beta portfolio returns in the lowest idiosyncratic
5Although estimates of a cross-sectional regression equation using the future realized return as a dependent

variable is inefficient, it is unbiased as long as the future idiosyncratic return is uncorrelated with the current
beta measure.
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volatility group is 0.43% per month and is statistically significant. When idiosyncratic volatil-

ity increases, however, this monotonic relation begins to reverse. That is, the relation between

return and beta appears to be hump-shaped for portfolios with median levels of idiosyncratic

volatility. Combining with the patterns on the return-idiosyncratic-volatility relation, we ob-

serve a reversed relation at the lower-right corner of Table 1.

These well-behaved patterns suggest that it is unlikely that the CAPM has failed com-

pletely, rather the market beta may reverse for stocks with both large beta and high idiosyn-

cratic risk. Even when the CAPM relation holds period-by-period, this small group of stocks

may experience beta reversal, which drive down their future returns. Therefore, we are unable

to empirically identify a cross-sectional positive risk-return relation. In contrast, individual

stocks’ returns can still comove contemporaneously with market returns when the CAPM

holds period-by-period. In other words, beta reversal also explains why the market factor

is still the single most powerful factor in explaining time-series asset returns even when the

market beta is incapable of differentiating future returns among individual stocks.

2.2 The Effect of Beta Reversal

The evidence from Table 1 also suggests that beta reversal is limited to a small group of

stocks. Therefore, it is important to understand why such a limited beta reversal can lead

to a failure of empirical tests. From a theoretical perspective, this could happen as long as

beta is sufficiently noisy in addition. As pointed out by Fama and MacBeth (1976), individual

stocks’ beta estimates are subject to large estimation errors (about 1/3),6 where both the

current and future beta estimates could be off by 1/3 on average. Beta could also vary over

time due to time-varying risk. In fact, Lewellen and Nagel (2006) find large variations in beta

over time (about 0.38).7 We thus refer both the estimation error and time-varying beta as

“beta instability” in our discussion.

6When using monthly returns to estimate beta, the estimation error can be approximated by: s(β̂i) =
s(εi)/[

√
60s(rm)] = 14.43/(

√
605.77) = 0.32, where εi and rm are the idiosyncratic and market returns, respec-

tively.
7They estimate that “beta has a standard deviation of roughly 0.30 for a ‘small minus big’ portfolio, 0.25 for

a ‘value minus growth’ portfolio, and 0.60 for a ‘winner minus loser’ portfolio,”which corresponds to an average
of 0.38. When considering both estimation errors and the time-varying nature of beta, the total variation in
beta could be as large as 50% (=

√
0.332 + 0.382) if the two variations are independent.
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Despite substantial“noises” in beta estimates, instability alone cannot account for the fail-

ure in cross-sectional tests. In fact, Fama and French (1992) recognize the issue of estimation

error, but their approach of applying portfolio beta estimates as proxies for individual stocks’

beta estimates does not salvage the beta-return relation. In contrast, we can show how a

partial beta reversal in the presence of beta instability masks the true beta-return relation in

empirical tests. To illustrate the mechanism, we start from the following conditional CAPM,

Ri,t = βi,tRm,t, (1)

where R.,t(= Et[r̃.,t+1]), r̃.,t, and βi,t are the conditional expected return, excess return, and,

conditional systematic risk measure, respectively, while i and m denote individual stock i and

the market, respectively. Since our focus is not on the time-varying expected return, we can

simply assume that Cov(βi,t, Rm,t) = 0. Therefore, from a time-series perspective, equation

(1) can be rewritten as,

r̃i,t = βi,tr̃m,t + εi,t, (2)

where εi,t is the idiosyncratic return.

Equation (1) can also be used in a cross-sectional tests. Due to the difficulty in estimating

an individual stock i’s conditional expected return, Fama and MacBeth (1973) recognize the

following relation,

r̃i,t+1 = Ri,t + ηi,t+1, (3)

which suggests the use of the future realized return (r̃i,t+1) as a proxy for the expected return

(Ri,t) as long as ηi,t+1being independent across stocks and being uncorrelated with βi,t. In

other words, we can regress r̃i,t+1 on βi,t in cross-sectional regression analysis. Again if we

do not consider the persistent time-varying risk, variations in beta can be captured by the

following simple structure,

βi,t = βi + ui,t, (4)

where βi is the long-term mean of βi,t; ui,t represents the short-term beta variation (such

as beta reversal) and is assumed to be i.i.d. across stocks with variance σ2. Since in prac-

tice we use an estimate of βi,t in cross-sectional regression analysis, ui,t should also reflect
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beta “instability”. To study properties of cross-sectional regression estimates, we further

assume that βi is a realization from a random variable β ∼ i.i.d(β̄, σ2
β). Under the true

time-series return structure of equation (2) and utilizing the rule of decomposition of covari-

ance (Cov(x, y) = Ez[Cov(x, y|z)] + Covz [E(x|z), E(y|z)]), we can show that the asymptotic

cross-sectional regression estimate γ from regressing r̃i,t+1 on βi,t can be expressed as follows,

γ =
Cov(r̃i,t+1, βi,t)

V ar(βi,t)
=

(
1 − σ2

σ2
β + σ2

+
Cov(ui,t+1, βi,t)

V ar(βi,t)

)
R̄m. (5)

When ui,t+1 and βi,t are independent, the estimate γ[= (1 − σ2

σ2
β+σ2 )R̄m] is biased downward,

reflecting the beta instability (or error-in-variables) problem. For example, when assuming

σβ = 1/3 and the monthly R̄m,t = 0.67% over the Fama and French’s (1992) sample period,

we should have seen a risk premium estimate of 0.206% even if beta instability is as large as

σ = 50%. In order for the γ estimate to be close to that observed in Fama and French’s study

(0.14%), beta instability must be as large as σ = 65% on average, which is unlikely.

When beta also reverses at the same time, we do not need to have such large beta instability

to explain the failure of cross-sectional tests. One simple way to capture beta reversal is to

assume the following structure for ui,t+1,

ui,t+1 =
{ −αvi,t +

√
1− α2vi,t+1 with probability p

vi,t+1 with probability (1 − p)
, (6)

where vi,t+1 is i.i.d. with zero mean and variance σ2. This is equivalent to require p percent

of stocks to reverse at any given point of time. Under this structure, we can show that,

γ =

(
1− σ2

σ2
β + σ2

− αp[1− p(1−
√

1 − α2)]
σ2

σ2
β + σ2

)
R̄m,t. (7)

Assuming σβ = 33.33% and α = 66.67% as an example, we have the following two cases that

will all result in γ = 0.14% found in Fama and French (1992):

• Case I: σ = 35% and p = 100%, and

• Case II: σ = 45% and p = 33.33%.

Comparing the above two cases, the first case requires all stocks to reverse (with a low level

of beta instability), while only a small group of stocks needs to reverse in the second case
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(with a high degree of beta instability). This simple exercise demonstrates that beta reversal

among a small group of stocks can reduce the γ estimate in a significant way. In our empirical

sections, we intend to show that the second case is likely to prevail.

There are two additional features from this analysis worth noting. First, it is important to

recognize that such a reversal may occur once a while and is temporal for a particular stock,

but at any given point of time there exists beta reversal among some stocks. Second, if α

in equation (6) is related to some exogenous variables, such as idiosyncratic volatility, beta

reversal may be predictable by the product of beta and idiosyncratic volatility. This means

that we are able to remove the catalyst of beta reversal and to restore the predictive power

of beta even if beta is still instable. Therefore, controlling for beta reversal is the key to find

a positive beta-return relation in cross-sectional tests.

2.3 Detecting Beta Reversal

To substantiate our analysis in Section 2.2 we need to show that beta indeed reverse. In

general, beta varies significantly from period to period in a complicated way, making it difficult

to isolate the reversal effect. One way to identify beta reversal is to study the conditional

distribution of beta over time. As a simple exercise, we can compute a transition probability

matrix. In practice, beta estimates are also persistent due to the time-varying risk suggested

by Merton, which means that individual stocks’ betas also revert to their mean in long-run.

Such a feature is not captured by the model discussed in Section 2.2 above. It is therefore

inappropriate to directly compute the transition probabilities. Given the short-run nature of

beta reversal, a simple solution is to focus on the transition probabilities conditioning on the

level of last period beta but net of the persistence effect.

Patterns in transition probabilities can then be analyzed against certain benchmarks. Such

a benchmark can be established from a theoretical transition probability matrix under a simple

distribution assumption. In order to capture both the long-run persistence and short-run

reversal in a similar spirit of equation (6), we assume a simple ARMA model for beta as,

β = (1− ρ)μ + ρβ−1 + η − φη−1. (8)
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Since beta estimates seem to follow a normal distribution and the corresponding condi-

tional distribution can be easily computed, we assume that η and η−1 follow a joint normal

distribution with zero means. Assuming V ar(β) = σ2, we have a conditional distribution as,

f(β̃|β−1) = N
[
(1− ρ)μ− φκ(β−1 − μ), κ(1 + φ2)σ2

]
, (9)

where κ = 1−ρ2

1−2ρφ+φ2 and β̃ = β − ρβ−1 is the relative beta net of the persistence effect.

Applying Equation (9), we can compute the transition probability for stocks in one of the

three equally divided groups during the next period. For example, the probability for a stock

to remain in the small group without the persistence effect is:

P (β̃ ≤ b1,small|β−1 = β̄small) = Φ

(
b1,small − [(1− ρ)μ− φκ(β̄small − μ)]√

κ(1 + φ2)σ

)
. (10)

For each group, β̄. in the base period can be computed in the following way. When μ = 1

and σ = 0.5, we can divided betas into three equal probability groups with breaking points

of b0,small = 0.78 and b0,large = 1.22. With these break points, the group means of beta in

the small, median, and large groups are β̄small = 0.45, β̄median = 1.00, and β̄large = 1.55,

respectively.8

To incorporate different levels of beta reversal, we choose three different values of φ,

but set ρ = 0.4 according to our empirical estimate. In Case I, there is no beta reversal

with φ = 0; in Case II, beta reverses at a moderate level with φ = 0.4; and in Case III,

beta reverses substantially over time with φ = 1.0. We then compute the breakpoints for

the relative beta in the next period using the same approach but under the unconditional

distribution of f(β̃) = N [(1 − ρ)μ, κ(1 + φ2)σ2]. The corresponding group break points are:

b1,small = 0.385 and b1,large = 0.815 in Case I; b1,small = 0.37 and b1,large = 0.83 in Case II;

and b1,small = 0.34 and b1,large = 0.86 in Case III. With these parameter values, the theoretical

transition probability matrices can be computed as,

Case I : φ = 0 Case II : φ = 0.4 Case III : φ = 1.0
small
median

large

⎡
⎣ 1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

⎤
⎦ v.s.

⎡
⎣ 0.20 0.31 0.49

0.33 0.34 0.33
0.49 0.31 0.20

⎤
⎦ v.s.

⎡
⎣ 0.14 0.28 0.58

0.33 0.34 0.33
0.58 0.28 0.14

⎤
⎦ .

8For a random variable x with a normal distribution, N(μ,σ), the conditional mean is: E(x|x ≥ c) =
μ + σφ( c−μ

σ
)/[1 − Φ( c−μ

σ
)], where φ(.) and Φ(.) are the pdf and CDF of a standard normal, respectively.
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The transition probabilities is evenly distributed when the relative beta is independent

over time as expected. In contrast, the transition probabilities should be concentrate on the

opposite diagonal when beta reverses. This is exactly the pattern found in above transition

matrices. Moreover, a moderate reversal effect results in significant changes in the transition

probabilities compared to the base case of no reversal. These patterns from the three cases will

be compared to the actual transition probability matrix computed in our empirical section.

2.4 Why Does Beta Reverse?

Although we are focusing on documenting beta reversal and its effect on asset pricing tests,

we now make a first attempt to explore potential channels for beta reversal. Due to its short-

term nature, beta reversal is more likely to be “caused” by market frictions and short-term

investor behavior. In addition, beta reversal might be related to risk shift. We propose three

channels–the wealth effect, earnings announcement effect, and growth option realization.

First, beta reversal might be related to investors’ speculative trading activities. When

investors are actively chasing certain stocks, the rising prices will increase these stocks’ market

capitalizations. Consequently, their weights in the market portfolio will increase since the

market portfolio is a value-weighted portfolio. As argued by Cochrane, Longstaff, and Santa

Clara (2008), these stocks will covary more with the market portfolio due to larger shares

in the market portfolio. The covariance-based beta measure for these stocks will therefore

temporally deviate from their fundamental values. At the same time, these stocks will have

low future realized returns because of temporal increases in the current prices despite increases

in their beta. Moreover, if speculators prefer stocks with high risks (see Han and Kumar, 2013,

and Falkenstein, 1996), stocks with both large systematic and large idiosyncratic risks tend

to reverse more, other things being equal. An indirect approach to investigate this possibility

is to study links among changes in idiosyncratic volatilities, market capitalizations, and beta

estimates of individual stocks.

The second reason for beta to reverse is motivated by Patton and Verardo (2012). They

find that more than 20% of stocks’ betas rise before earnings announcement and reverse
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following the announcement. This is because an earnings announcement by a firm not only

reveals information regarding that particular firm but also contains information about the

overall market. Investors of non-announcing firms will thus try to learn the profitability of

their firms by paying attention to the announcing firm. Such a learning activity across all firms

will increase the return covariance of the announcing firm with the overall market, leading to

an increase in its beta. When uncertainty is resolved following earnings announcement, beta

reverses to its normal level. Patton and Verardo (2012) also find that beta reversal is strong

when earnings announcement surprises are large. As documented by Jiang, Xu, and Yao

(2007), firms with large idiosyncratic risks tend to have large earning surprises. This means

that beta reversal is more likely to occur among stocks with large idiosyncratic volatility.

We assess this particular channel of beta reversal by investigating whether the reversal effect

weakens when observations pertaining to earnings announcement months are removed.

Finally, beta reversal might also be a result of risk shift. For example, a firm’s risk changes

with the amount of real options that it possesses (see Da, Guo, Jagannathan, 2012 and Grullon,

Lyandres, and Zhdanov, 2012). In general, young firms, small firms, and growth firms not only

tend to have large beta, but also are likely to possess more growth options.9 It is believed that

growth options are riskier than assets-in-place. When these firms realize their real options,

their beta measures will drop accordingly, other things being equal. Although this is a dynamic

implication and depends on the realization of growth options, we can indirectly investigate

whether changes in firms’ beta estimates are positively related to their characteristics such as,

size, book-to-market ratio, and firm age under the assumption that firms are more likely to

realize their growth options when they possess more.

The effect of beta reversal on asset prices are very different from that of time-varying risks.

The latter is largely driven by macroeconomic conditions and affects the fundamental risks

of all firms. Therefore, one can view our effort as complementing the existing studies using

time-varying factors in cross-sectional tests. This also means that it is important to control

for persistence of beta when investigating beta reversal as discussed in Section 2.3.
9As shown by Malkiel and Xu (2003), a fast growing firm usually has large beta and high idiosyncratic

volatility at the same time.
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2.5 Controlling Beta Reversal

If beta reverses, it is critical to control for its effect in the conventional asset pricing tests in

order to obtain unbiased estimates. Since beta reversal is likely to occur among stocks with

both large idiosyncratic and systematic risks (see Section 2.4), a simple control for idiosyncratic

volatility will not restore the predictive power of beta. In fact, Ang, Hodrick, Xing, and

Zhang (2006) show that beta is still insignificant after including idiosyncratic volatility in

their regression. We therefore offer three feasible approaches to account for beta reversal in

our empirical study.

Because of beta reversal, a simple cross-sectional regression of r̃i,t+1 on βi,t will introduce a

bias as discussed in Section 2.2. To eliminate the bias, Equations (5) suggests that we should

regress (r̃i,t+1 − ui,t+1R̄m) on βi,t instead, which is equivalent to rewriting the cross-sectional

regression equation as,

r̃i,t+1 = γβi,t + γui,t+1 + ξi,t+1. (11)

According to equation (6), if ui,t+1 = g(βi,t, zi,t)+νi,t+1, where zi,t represents other exogenous

variables, we are able to get an unbiased estimator γ = R̄m when using g(.) as an additional

regressior. To capture the first order effect, we further assume that zi,t is the idiosyncratic

volatility IVi,t, and g(βi,t, zi,t) = κβi,t×IVi,t according to our discussion in Section 2.4. Under

this specification, we can directly run a multivariate regression that includes an additional

interaction term between the past beta and past idiosyncratic volatility as a control. This

direct approach is efficient, but may not be robust to the functional form of g(.).

The idea behind our direct approach is to control the potential correlation between resid-

uals (represented by the last two terms in equation (11)) and the beta variable by explicitly

specifing the second term in equation (11). An alternative approach is to combine the first

two terms in equation (11). That is, we can define β̂i,t+1 = βi,t + g(βi,t, zi,t), and use β̂i,t+1

in the cross-sectional regression. Normally, it is difficult to directly compute β̂i,t+1 without

knowing the exact function of g(.). Fortunately, in the context of beta reversal, we can use

βi,t+1 as an estimate for β̂i,t+1. If beta reversal can be predicted by firm characteristics such

as the interaction between the past idiosyncratic volatility and past beta, we can use a two-
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step procedure. In the first step, we estimate the prediction equation by regressing βi,t+1 on

elements in β̂i,t+1 using the whole sample. These coefficient estimates will be used to compute

the predicted beta estimate ˆ̂
βi,t+1 each month. In the second step, we use these predicted beta

estimates in the cross-sectional regression analysis.10 This procedure is more robust than the

direct approach although it is less efficient.

Finally, if beta reversal imposes a systematic risk to ordinary investors, they are willing

to pay for a price to hedge such a risk. For example, investors might care about the adverse

effect created by speculative trading, or the increased comovement leading toward earnings

announcement, or drop in systematic risk. Similar to Fama and French (1993), we can con-

struct a hedging factor reflecting such a risk. When estimating an individual stock’s beta,

we can then include both the market factor and the beta reversal factor in the regression.

The corresponding market beta estimate from such a two-factor model is called beta reversal

adjusted beta. If a stock is sensitive to beta reversal, its return will comove more with the

reversal factor than the market factor, which reduces its comovement with the market factor.

This will make the market beta estimate smaller than that only using the market factor. Such

an adjusted beta will be applied in the cross-sectional regression to account for beta rever-

sal. The beta reversal factor is constructed following Fama and French (1993) by sorting all

stocks into five idiosyncratic volatility and five beta groups, resulting 25 portfolios. We then

subtract the portfolio of stocks with both the smallest idiosyncratic volatility and the smallest

beta from the portfolio containing stocks with both the largest idiosyncratic volatility and the

largest beta to form the beta reversal factor.

3 Data Sample and Variables

In order for our study to be replicable, we first describe our sample of data. We then provide

detailed information on variable construction. Summary statistics is also discussed to ensure

the comparability of our analysis with existing studies.
10One caveat regarding this procedure is the potential forward-looking bias. This is less of a concern if our

purpose is to find the true structure g(.) instead of constructing a trading strategy. Theoretically we should
have used the true parameters in the prediction equation to estimate the predicted beta, but this is impossible.
We therefore resort to the second best by utilizing as much information as possible in order to accurately
estimate the prediction equation.
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3.1 Data Sample

Our sample covers all available stocks traded on the NYSE, AMEX, and NASDAQ exchanges

over the sample period from July 1963 to December 2010. This choice of sample period also

reflects the availability of daily data. Stock returns are obtained from the Center of Research

in Security Price (CRSP ) and factor returns are collected from Kennneth French’s website.

As a common practice, our sample is restricted to ordinary common stocks with a share code

of either 10 or 11. Financial firms, ADRs, shares of beneficial interest, companies incorporated

outside the U.S., American Trust components, close-ended funds, preferred stocks, and real

estate investment trusts (REITs) are excluded from our sample. Accounting information is

acquired from the COMPUSTAT database. To ensure having all information on each stock,

we use the merged CRSP and COMPUSTAT database.

At any month, we only include firms that have data for all variables in cross-sectional

regression analysis. As a result, we have more than 5000 firms each month on average. In

order to reduce the effect of possible outliers or influential observations on the coefficient

estimates, we also winsorize all independent variables each month at the 0.5% and 99.5%

levels. We ensure the robustness of our results by splitting the whole universe of stocks into

the NY SE/AMEX subsample and NASDAQ subsample, and dividing the whole sample

period into two equal subsample periods from 1963 to 1986 and from 1987 to 2010.

3.2 Variables

We follow Fama and French’s (1992) approach to construct our key variables. For example, we

estimate the pre-ranking rolling market beta (Betar) from a market model based on the past

24 to 60 monthly returns (as available) in order to accommodate the feature of time-varying

beta. Since individual stocks’ beta estimates are very noisy (that is “unstable”), Fama and

French (1992) also use the so-called post-ranking portfolio beta estimate (Betap) as a proxy

for individual stocks’ beta estimates in the portfolio to alleviate the possible error-in-variables

problem. For robustness check, we construct the same 100 size and pre-ranking beta sorted

portfolios and estimate their beta. We then reassign these portfolio betas to individual stocks
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within each portfolio to obtain the post-ranking beta of individual stocks. These post-ranking

beta estimates also vary over time.11 According to Ang, Liu and Schwarz (2010), however,

portfolio beta conceals important information contained in individual stocks’ beta, particularly

in short-run. Our main results are therefore based on the rolling beta estimates (Betar) of

individual stocks.

The above two approaches of estimating beta may not be powerful enough to capture

all features of beta reversal since they are long-window estimates despite frequent updates.

Lewellen and Nagel (2006) propose an alternative approach by using the short-window regres-

sion to estimate beta. They argue that such a beta estimate is an unbiased estimate of the

conditional beta. Following their procedure, we also estimate beta based on the daily returns

over either the past one month (Betad,1) or three months (Betad,3) in our robustness study.12

To reflect the new findings of this study, we propose a new beta estimate adjusted for beta

reversal as discussed in Section 2.5. This measure is similar to Betar , but is estimated from

the following model for each individual stock,

ri,t − rf,t = αi + βadj,i(rm,t − rf,t) + birrev,t + εi,t, (12)

where rrev is the beta-reversal factor. We accordingly denote the estimate βadj from equation

(12) as Betaadj in our empirical section. The adjusted beta is designed to alleviate the beta

reversal effect.

The second key variable used in our study is the idiosyncratic risk measure. Following

Campbell, et al (2001), and Ang et. al. (2006), we use the realized idiosyncratic volatility

calculated based on the daily residual returns in the last month with respect to the following

model:

ri,t − rf,t = αi + βi(rm,t − rf,t) + sirSMB,t + hirHML,t + uirUMD,t + εi,t. (13)

where rsmb,t, rhml,t, and rumd,t are Fama-French’s size, book-to-market, and Carhart’s momen-

tum factor, respectively. We then sum residual squares to compute the idiosyncratic volatility
11If beta reversal is either reflected in the pre-ranking beta or correlated with size, the post-ranking beta will

continue to carry such characteristics since whether a stock belongs to a high or low beta groups is determined
by its pre-ranking beta and size.

12These measures are not used to present our main results because the idiosyncratic volatility measure used
in the same regression analysis is estimated also using daily returns from the past month.
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in that month (IVd).13 Any estimates of idiosyncratic risk depend on a particular asset pric-

ing model. For robustness, we also use a total volatility measure (TVd) computed from daily

excess return (ri,t−rf,t) as a proxy since more than 80% of the total volatility is idiosyncratic.

The realized idiosyncratic volatility measure is not only more accurate but also more

powerful in predicting beta reversal. As argued by Merton, an estimate of volatility is more

accurate when high frequency returns are used. In addition, our use of idiosyncratic volatility

is primarily for predicting and controlling the beta reversal effect rather than assessing its

pricing effect. If we use the conditional idiosyncratic volatility measure of Fu (2009), we

not only limit our sample size due to the convergence issue in estimating the conditional

idiosyncratic volatility, but also are subject to a forward-looking bias in the volatility estimate

as suggested by Guo, Kassa, and Ferguson (2014). However, as an alternative, we also use

a rolling idiosyncratic volatility measure (IVr) estimated by applying the above model to

monthly returns on a 60-month rolling basis (see Malkiel and Xu, 2003).

As popularized in the current literature, we construct several control variables related

to firm characteristics that help to explain the cross-sectional expected returns. Following

Fama and French (1992), we obtain the market capitalization (ME) and the book-to-market

ratio (B/M) for each firm. We also include the one-month lag return of Ret(−1) in order to

capture the return reversal effect, the lag two-month to seven-month compounded return of

Ret(−2,−7) to control for the momentum effect, and the Amihud (2002) illiquidity measure

(Illiq) to control for the liquidity effect. The Amihud illiquidity is defined as the average ratio

of the daily absolute return to the dollar trading volume in the last month. In addition, we

obtain the option-implied beta estimate from Professor Buss and the betting-on-beta (BAB)

factor from Professor Peterson’s website.

3.3 Summary Statistics

The summary statistics for variables used in our study are reported in Table 2. Over the

sample period from 1963 to 2010, the average monthly return (Ret) is 1.2%. Although this
13On average, there are 21 daily returns each month. In order to reduce the impact of extreme returns and

for robustness, we also estimate the idiosyncratic volatility using daily returns in the last three months. These
results are stronger in general.
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is somewhat higher than the historical norm, it is not the average market return but instead

the firm-month average.14 The median return of 0.0% indicates a skewed return distribution.

The average portfolio beta (Betap) of 1.36 is comparable to that reported in Fama and French

(1992). In contrast, the average rolling beta (Betar) of 1.16 is reasonable with a median of

1.09. Since the rolling beta is measured on individual stocks, it has more than twice the

variation (0.74) as the portfolio beta. This comparison suggests that to a large extent the

volatility in individual stocks’ beta estimates reflects beta instability over time. It is also

interesting to see that the average beta of 0.737 computed from daily returns (Betad,−1) is

much lower than the beta estimates for monthly returns, consistent with those reported in

Ang, Hodrick, Xing and Zhang (2006). This is largely a result of low comovement in daily

returns due to large idiosyncratic volatilities. This fact also contributes to the high variations

in beta estimates across all stocks with a standard deviation as high as 1.37. In order to

reduce possible noise, we also use Betad,−3 in our robust analysis.

Insert Table 2 Approximately here

Despite the difference in calculating idiosyncratic volatilities using daily returns (IVd)

versus using the past 24 to 60 monthly returns (IVr), the averages of these estimates are very

similar (12.7% versus 12.6% per month). However, the IVd measure fluctuates 40% more than

the IVr measure, meaning that the realized idiosyncratic volatility measure might be more

suited to capture features of beta reversal than the rolling idiosyncratic volatility measure.

Consistent with the literature, idiosyncratic volatility does account for a major part of the

total volatility of 15.1% on average.

The statistics for control variables including the size, book-to-market, momentum, return

reversal, and illiquidity are comparable to those reported in the literature. For example, the

average firm size is $100 million with 25% of the firms having an average market value being

less than $20 million, and 25% of the firms having an average market value being greater

than $440 million. The mean and median of the log book-to-market ratios are −0.47 and
14One can consider the standard deviation for the firm-month observations of 15.9% as the total return

volatility, consistent with the finding of Campbell et al (2001) that idiosyncratic volatility accounts for a
majority part of the total volatility.
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−0.38, respectively, indicating a negative skewed distribution in the variable. The mean and

standard deviation of the compounded returns from past month 2 to month 7 are 7.8% and

43.1%, respectively, consistent with those of the average monthly return. Also consistent with

other studies, the Amihud (2002) illiquidity measure tends to skew to the right.

4 Empirical Results

Before discussing evidence supporting the pricing role of the market beta, we first establish

the fact of beta reversal. We then illustrate how the beta-return relation can be restored

in the absence of beta reversal based on portfolio analysis with a two-way sorting approach.

Our main results are obtained from cross-sectional regression analysis controlling for the beta

reversal effect in three ways, including the introduction of an interaction term, the application

of the predicted beta, and the use of the adjusted beta.

4.1 Beta Reversal

In order to show that beta reversal is the culprit in the failure of most cross-sectional tests of

the market beta, we must first show that beta does reverse. In practice, beta reversal may not

be apparent due to its persistent nature, possibly reflecting a time-varying risk. Moreover,

beta estimates contain errors by definition. As discussed in Section 2.3, we will examine

transition probabilities of beta by controlling for both persistence and errors.

From a theoretical perspective, beta reversal is likely to occur among stocks with large id-

iosyncratic risks as discussed in Section 2.4. We therefore compare the transition probabilities

of beta for different groups of stocks. In order to alleviate the persistence in the beta estimates

from using overlapping samples, we focus on Betad,−1 measure estimated from daily returns

within a month. In particular, we first sort all stocks into three groups each month accord-

ing to their Betad,−1 in order to determine the breakpoints of beta. Because of limited beta

reversal, we resort all stocks into five groups according to their idiosyncratic volatility IVd in

the same month. Stocks in the lowest (highest) idiosyncratic volatility group are sorted again

into three groups according to the beta breakpoints. Stocks in each beta-group are traced
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to one of the three groups (the small, median, and large beta groups) next period according

to their next period persistence-adjusted beta.15 We report transition probability matrices of

beta in Table 3. Numbers reported in brackets represent the distribution of stocks within the

group.

Insert Table 3 Approximately here

For stocks with low idiosyncratic volatilities, there is no particular pattern in the transition

probability matrix as shown in Panel A of Table 3, except that most stocks tend to have median

levels of beta in the next period. This is because the number of stocks in each group at t are

uneven with most stocks in the median group as shown from the numbers in the brackets.

In contrast, the transition probability matrix for stocks with high idiosyncratic volatilities

exhibits an apparent pattern as shown in Panel B of Table 3. The opposite-diagonal elements

are much larger than the corresponding diagonal elements. For example, stocks with small

(large) beta estimates at time t will have more than 53% chance to fall into the large (small)

beta group at time t+1. Except for stocks with median beta estimates, this pattern is similar

to that of the theoretical transition probability matrix discussed in Section 2.3 when beta

reverses.16 Beta reversal is therefore evident among stocks with large idiosyncratic volatilities.

Establishing the fact of beta reversal is only the first step in understanding the failure of

beta in asset pricing tests. In order to restore the explanatory power of beta in cross-sectional

tests, we need to be able to“predict”beta reversal. This cannot be done simply using the past

beta since beta is persistent in the long-run while beta reversal is a short-term phenomenon.

As shown in Table 3 reversal occurs mostly among stocks with large idiosyncratic volatilities,

and from our discussion in Section 2.4, we expect that beta reversal can be predicted by the

interaction between beta and idiosyncratic volatility.17 The results are reported in Table 4.
15As a result, stocks in each group are unevenly distributed. The persistence-adjusted beta is calculated

according to Betat+1,(d,−1) − 0.24Betat,(d,−1), where the adjustment coefficient is obtained from Table 4.
16This is consistent since most stocks in this group seem to have either small or large beta estimates to begin

with as indicated by the number reported in bracket.
17For robustness, we have also explored other predictors, such as size, book-to-market, liquidity, and firm

age, and their interaction with past beta. Among them only size and idiosyncratic volatility have independent
explanatory power. Due to high correlation between the two variables and the use of idiosyncratic volatility is
economically motivated, we decided to focus on idiosyncratic volatility only. Results are available upon request.
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Insert Table 4 Approximately Here

The first regression equation in Panel A of Table 4 is simply an autoregressive model ap-

plied to beta in a cross-sectional setting. Since the autoregressive coefficient estimate of 0.24 is

very significant, it is consistent with the idea of time-varying risk found in many other studies.

Although beta persistence is largely associated with a long-term effect, beta also interacts with

idiosyncratic volatility to predict beta reversal. As shown in the second equation, the negative

coefficient estimate of the interaction term (−0.596) is not only statistically significant at a

1% level, but also indicates beta reversal. Persistence in beta also amplifies the variability of

beta estimates, no matter it is due to shocks or estimation errors (see the summary statistics

in Table 2). Beta instability also interacts with beta reversal to destroy the explanatory power

of beta as discussed in Section 2.2.

The persistence estimate in Panel A of Table 4 may seem too be low. One possibility con-

tributor is the estimation error when using insufficient data. Our second exercise uses daily

returns from the last quarter (three months) to estimate beta Betad,−3. As shown in Panel

B of Table 4, when the same future beta estimate is regressed on such a new beta measure

Betad,−3, the corresponding autoregressive coefficient estimate indeed increases to 0.45. The

coefficient estimate for the interaction term between the past beta and idiosyncratic volatil-

ity accordingly does not change much (from −0.596 to −0.562) shown in the last equation.

Therefore, predicting beta reversal is not very sensitive to the kind of beta estimates. This

result is also consistent with Galai and Masulis’s (1976) prediction that beta drops with an

increase in the total volatility, which largely consists of idiosyncratic volatility.

These results demonstrate that beta not only reverses in the short-run, but is also pre-

dictable. We show in the next section how such beta reversal affects the cross-sectional

return-beta relation, and how we can restore the explanatory power of beta.

4.2 Portfolio Analysis

After showing that beta reverses in short-run in the last section, we continue to investigate

how beta reversal among a small group of stocks can lead to a failure in cross-sectional tests
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of beta, and more important, whether the explantory power of beta can be restored. As

an intuitive way to answer these questions and examine the potential complicated relation

between risk and return, we start from the two-way sorting approach. A more comprehensive

study on these issues will be based on cross-sectional regression analysis in the next subsection.

Starting from replicating the Fama and French’s results, we first illustrate the failure of

market beta in Panel A of Table 5. In order to be consistent with regression analysis in the

next subsection, we focus on the rolling beta measure (Betar). In particular, we sort all stocks

into five groups based on Betar at the beginning of each month and simultaneously into five

groups according to their book-to-market ratios (B/M).18 Consistent with Fama and French

(1992), portfolio returns increase with the book-to-market ratios when all stocks are used in

sorting. The return differences between portfolios with the highest and lowest book-to-market

ratios vary from 0.75% to 1.07%, and are significant for any beta groups. In contrast, at any

level of B/M , portfolio returns do not increase monotonically with their betas.

Insert Table 5 Approximately here

To show that beta reversal among a small group of stocks (see Table 1) is responsible for

above observed patterns, the simplest exercise is to investigate whether or not the beta-return

relation can be restored after deleting the stocks that are likely subject to beta reversal. Based

on our discussion in Section 2.1, we choose to delete the four stock portfolios in the lower left

corner of Table 1, which account for approximately 5% of the total market capitalization. In

order to place our results into the perspective of Fama and French (1992), we then simultane-

ously sort the remaining stocks into 25 portfolios according to beta and book-to-market. In

contrast to Panel A of Table 5, there is a clear monotonic relation between portfolio returns

and beta (except for two portfolios) as shown in Panel B. More important, for portfolios with

similar book-to-market ratios, the return difference between the largest and smallest beta port-

folios is positive and significant except for portfolios with very large book-to-market ratios.

This simple exercise reveals two facts. First, beta is still useful in explaining cross-sectional
18The general pattern discussed in this section holds when sorting stocks according to firm size and beta

instead. Since size and idiosyncratic volatility are highly correlated, we only report one table to save space.

24



return differences of majority stocks. Second, when only a small group of stocks experiencing

beta reversal, its impact is still pervasive if beta is also instable at the same time. Thus, beta

reversal is a driving force for the dramatic difference between Panels A and B in Table 5.

An alternative way to show the pervasive impact of beta reversal on the overall risk-return

relation is to plot the ex-post beta-return relation using the popular Fama and French 25

size-B/M sorted portfolios. For each portfolio, we fit a simple market model over the whole

sample period to obtain the beta estimate. We then plot the average return for each portfolio

against its beta estimate in Panel A of Figure 1. Clearly there is no relation between average

portfolio returns and portfolio betas. In fact, three portfolios with the largest returns do

not have the largest betas. We then reconstruct these 25 portfolios in the same way as in

Fama and French (1993) but for the reduced sample used in Panel B of Table 5. After re-

estimate portfolio betas, we plot a similar graph in Panel B. There is a clear positive relation

between average returns of new portfolios and their beta estimates. Although the range of

beta estimates remains the same from 0.8 to 1.4, the three portfolios with the large returns in

Panel A are now having the largest betas. On average, portfolio returns are located around

the theoretical line. Therefore, beta reversal is an important factor in helping us understand

why market beta lacks explanatory power for expected returns.

Insert Figure 1 Approximately here

4.3 Evidence from Fama-MacBeth Regression Analysis

Our portfolio analysis in the previous section provides intuitive evidence on the adverse effect

of beta reversal and the existence of a positive risk-return relation when the beta reversal

effect is removed. However, the double-sorting approach is limited to the dimensions of sorting

variables. A rigorous asset pricing test must be performed on a full sample. An alternative

approach to “remove” the effect of beta reversal is to control for such an effect in a regression

framework. From the analysis of Section 4.1, this is possible since we are able to“predict”beta

reversal. We thus apply the standard Fama-MacBeth regression approach on individual stocks

to better isolate the pricing effect of beta in the presence of beta reversal, while considering
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effects from other known factors including the size, book-to-market, momentum, liquidity, and

return reversal factors.

As discussed in Section 2.5, we can control for the beta reversal effect in three ways. The

direct approach adds an interaction term between the past beta and the past idiosyncratic

volatility in our regression models. In order to be consistent with the literature, we use the

past rolling beta estimate Betar and the past idiosyncratic volatility measure IVd in cross-

sectional regression equations. Results are reported in Table 6 along with the Newey-West

(1987) robust t−statistics.

Insert Table 6 Approximately Here

Estimates shown under Model 2 and Model 3 in Table 6 confirm the Fama and French’s

(1992) finding that the market beta has no explanatory power for expected returns, while

book-to-market does offer explanatory power. Different from Fama and French (1992), the

size variable is insignificant, which is consistent with many recent studies that find a weak

explanatory power of the size variable in recent sample period. Interestingly, when including

the realized idiosyncratic volatility in Model 4, the size variable becomes very significant again.

This could be a result of high correlation between idiosyncratic volatility and size (see Malkiel

and Xu, 1997), which helps reduce the noise in the size variable if size is a proxy for some risk

factors. Consistent with Ang, et. al. (2006), the realized idiosyncratic volatility is negatively

related to future returns. However, the beta measure remains to be insignificant.

After controlling for beta reversal using an interaction term between beta and idiosyn-

cratic volatility in Model 1 of Table 6, the beta variable now becomes very significant with a

positive coefficient estimate of 0.5% per month, consistent with the CAPM theory. Although

the estimate is a little higher than the average excess market return of 0.44%,19 it is an im-

pressive improvement compared to that of the Fama and French (1992). At the same time,

the interaction term between beta and the realized idiosyncratic volatility has a negative sign

and is statistically significant as hypothesized. The significance of the beta variable remains

even after controlling for Fama and French’s (1992) size and book-to-market factors as shown
19Statistically, we cannot reject the hypothesis that they are the same.
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in Model 5. This result once again demonstrates the importance of beta reversal in affecting

asset returns.

Controlling for beta reversal seems to subsume the negative relation between the realized

idiosyncratic volatility and future returns found in Ang, et. al. (2006). The negative relation is

thus limited to stocks with large beta estimates, possibly due to investors’ short-term behavior

of chasing stocks with high idiosyncratic risk. In fact, the idiosyncratic volatility variable is

even positive although insignificant in Model 1.20 We further control for return reversal and

momentum in Model 6, and the additional liquidity effect in Model 7. The coefficient estimate

of beta even drops to 0.4%, matching with the actual market excess return over the same

sample period. The interaction term continues to be significant while idiosyncratic volatility

is insignificant. The beta reversal effect is therefore unlikely to be a proxy for other known

factors that might drive stock returns.

The strong evidence presented in this section has three additional implications. First, the

beta reversal effect can also reconcile the seemingly contradictory evidence between the large

explanatory power of the market factor and no predictive power of beta for cross-sectional

returns. When the CAPM holds period by period, stock returns will highly covary with market

return by construction. Yet, high current betas do not necessarily imply large future returns

from a cross-sectional perspective if these betas reverse. Second, the beta reversal effect is

likely to be independent of the time-varying risk effect of Jagannathan and Wang (1996) since

it occurs over an inter-median term. If beta reversal is a short-run phenomenon, our evidence

is also consistent with Kothari, Shanken, Sloan’s (1995) finding that the CAPM relation holds

in low frequency data. Third, the beta reversal effect can be controlled such that the market

beta is capable of predicting the expected return for all stocks.

4.4 Controlling Beta Reversal with the Predicted or Adjusted Betas

Direct control of the beta reversal effect is efficient but may not be robust as discussed in

Section 2.5. An alternative approach is to use a predicted beta ̂Beta that reflects beta reversal
20This indicates that idiosyncratic risk might have a pricing effect, but the realized idiosyncratic volatility

measure is too noisy to capture the priced component of idiosyncratic risk as argued by Cao and Xu (2009).
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in cross-sectional regression analysis. In particular, it is estimated using both the lagged beta

and the interaction term between the lagged beta and the lagged idiosyncratic volatility as in

Table 4. With such a predicted beta measure, we not only are able to eliminate the potential

bias in the coefficient estimate, but also can directly estimate the market risk premium using

the coefficient estimate. Our results are reported in Table 7.

Insert Table 7 Approximately here

Different from Table 6, the primary beta estimate used in Table 7 is based on daily returns

in the past month in order to avoid excessive sample overlapping and remain consistent with

the results in Table 4. As shown in Panel A of Table 7, the predicted beta variable by itself is

now significant at the 5% level. The coefficient estimate of 0.40% is close to the sample mean

of the market excess return as predicted by theory. This result becomes even stronger when

used with the size and book-to-market variables. For example, the coefficient estimate for the

predicted beta is now 0.7% per month in Model 2, and is significant at the 1% level. One

possible reason for the large estimate is that the true market risk premium might be higher

than the sample average when other risks are properly controlled for. This explanation seems

to be plausible since the coefficient estimate becomes even larger when idiosyncratic volatility

is explicitly included in Model 3. These results are robust even when controlling for return

reversal and momentum in Model 4, and liquidity in Model 5.21

Evidence from the predicted beta continues to support the existence of beta reversal. Al-

though the predicted beta approach is robust, it may not be efficient. This is the main reason

for us to focus on the direct control approach in Table 6 and in most of our empirical study.

Moreover, misspecification in the direct approach tends to bias us against finding significant re-

sults. Alternatively, if investors care about the beta reversal effect due to temporary increases

in beta from either speculative trading or the uncertainty around earnings announcements (or

others as discussed in Section 2.4), they will try to hedge such a risk. Using a beta-reversal

hedging factor, we can obtain a reversal-adjusted market beta Betaadj as discussed in Section

3.2. Our results are reported in Panel B of Table 7.
21We have also attempted to compute the predicted beta using alternative beta estimate. The results are

very similar.
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Due to the construction of the reversal factor, the sample period is a little shorter (starting

from 1965 instead of 1963). For comparison, we first show the Fama and French specification

in Model 1 using the original rolling beta measure Betar . The coefficient estimates are very

close to those reported in Model 3 of Table 6, and the beta variable continue to be insignificant.

When the adjusted beta (Betaadj) is used instead, it becomes very significant at a 1% level

shown in Model 2 of Table 7. Although the magnitude of the coefficient estimate is half of

the actual risk premium over the same period, it is a significant improvement over the Fama

and French’s results. The smaller estimate may be a result of using a noisy hedging factor in

estimating the adjusted beta. Including the idiosyncratic volatility measure IVd in Model 3

has no effect on beta but made the size variable significant. When all variables are included

in Model 5, the adjusted beta becomes even more significant. To a large extent, the increased

significance in the adjusted beta is not coming from the IVd variable. This is apparent when

the IVd variable is removed while all other controlling variables are included in Model 4. The

significance of the adjusted beta also suggests we should use a two-factor model (see Equation

12) in time-series analysis in order to correctly estimate the beta.

4.5 Predicting the Expected Return

The strong cross-sectional evidence from effective control of beta reversal does not necessarily

indicate a large overall explanatory power of beta for expected returns. We further assess the

effectiveness of controlling for beta reversal by computing the predicted returns of each stock

according to Model 1 of Table 6.22 Individual stocks’ expected returns are then aggregated

into 100 portfolios’ expected returns in order to achieve better visualization. The construction

of these portfolios is based on sorting all stocks according to their rolling betas and realized

idiosyncratic volatilities.23 We plot the time-series average of each portfolio’s expected returns

against the average return of each portfolio in Panel B of Figure 2. For comparison, we

also compute the expected returns of individual stocks using the rolling beta and realized

idiosyncratic volatility only as a base model. The corresponding portfolios’ expected returns

and average portfolio returns are plotted in Panel A of Figure 2.
22Results are virtually the same when the complete Model 7 is used instead.
23This sorting schedule ensures the maximum spread in the expected returns.
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Insert Figure 2 Approximately Here

In theory, each portfolio should lie on the 45-degree line in the graph. When the expected

return is computed from the base model using beta and idiosyncratic volatility variables only,

the relation between the expected returns and the average returns is flat as shown in Panel

A of Figure 2. In contrast, portfolios are now scattered around the 45-degree line in Panel

B of the same figure when beta reversal is controlled in computing the expected return. The

dramatic difference between the two graphs not only shows the importance of the traditional

market beta, but also demonstrates the economic significance of the beta reversal effect.

5 Why Beta Reversal Is An Independent Factor?

Our empirical results not only provide evidence on beta reversal, but also show both the

statistical and economic significance of this factor in cross-sectional asset pricing tests. How-

ever, to convincingly claim that beta reversal is the main cause for the failure of beta in

cross-sectional tests “beyond reasonable doubt,” we need to both show that beta reversal is

not a proxy for other factors and demonstrate the significance of economic links behind beta

reversal. In this section, we first investigate the relation between our beta reversal factor and

the betting-against-beta (BAB) factor of Frazzini and Pedersen’s (2014) and the possible re-

flection of the option-implied beta (Buss and Vilkov, 2012). We then study the three possible

channels behind beta reversal discussed in Section 2.4.

5.1 Is Beta Reversal Independent of Other Factors?

There is a large empirical literature on investigating the pricing power of the market beta. As

a result, many alternative approaches and measures of systematic risk have been proposed.

We intend to make a case for the uniqueness of our beta reversal factor.

5.1.1 Betting Against Beta

One explanation for the flat relation between beta and return is the leverage constraint argu-

ment proposed by Frazzini and Pedersen (2014). In the CAPM world, less risk averse investors
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will use leverage to achieve high expected returns. However, if some investors are margin con-

strained, they will alternatively take a relatively larger position on risky stocks than that

prescribed by the market portfolio. The overweight on risky stocks will consequently result in

low returns for these stocks. To show the importance of such a leverage effect, they construct

a BAB factor by longing leveraged low-beta assets and shorting high-beta assets.

Although beta reversal is closely related to idiosyncratic risk, which is very different from

imperfect diversification, it is still possible that the BAB factor shares common empirical

effects with our beta-reversal factor (BR). Due to their focus on portfolio analysis across

different country and different classes of assets, we compare the explanatory power of the

BAB factor against that of our BR factor over our sample period. For the Fama and French

25 size and book-to-market sorted portfolio returns, we run time-series regression on the BAB

and/or BR factors. The regression coefficients of the two factors are reported in Table 8.

Insert Table 8 Approximately here

The BR factor and BAB factor are used in regression equations in the left and right parts

of Panel A of Table 8, respectively. Clearly, most of the portfolios are significantly loaded on

the respective factors when each factor is used separately. Both factors are therefore important

and may share some commonality. To study the unique contribution of each factor, we include

both factors in the same regression. Results from Panel B of suggest that the two factors seem

to be orthogonal to each other. Both factors have similar numbers of portfolios significantly

loaded on. More important, most of the portfolios only loaded on one of the factors.

Time-series evidence does not necessarily translate into cross-sectional support. Since our

study focuses on cross-sectional evidence, we can further investigate the relative importance

of our BR factor versus the BAB factor on individual stocks. One approach is to construct

an equivalent BAB-adjusted beta and compare its cross-sectional explanatory power to that

of the the BR-adjusted beta. In particular, the BAB-adjusted beta is also constructed by

running a two-factor model using both the market factor and the BAB factor as a control

factor, and record the coefficient estimate on the market factor as the BAB-adjusted beta,

BetaBAB . Results from cross-sectional regression analysis using the BAB-adjusted beta are
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reported in Table 9. Comparing to those using the BR-adjusted beta in Panel B of Table 7,

the BAB-adjusted beta is insignificant and does not behave differently from the rolling beta.

Therefore, despite its time-series explanatory power, the BAB factor lacks cross-sectional

explanatory power. In this sense, our BA factor is more fundamental than the BAB factor.

Insert Table 9 Approximately here

5.1.1 Option-Implied Beta

Another possible source for lacking the explanatory power of the conventional beta measure

is the efficiency of the measure. Incorporating additional information from the option data

may improve the efficiency of beta estimates since option prices reflect the most recent market

information. Following this idea, Buss and Vilkov (2012) estimate the option-implied beta

for stocks in the S&P 500 portfolio and find a positive risk-return relation with a slope

estimate close to the market excess return. Although they suggest that the success of the

option-implied beta is its ability to capture the time-varying risk, it is also possible that

option traders recognize the feature of beta reversal in the short-run and discount such a risk

accordingly in the option prices. In this case, the option-implied beta should subsume the

explanatory power of our BR-adjusted beta. We study the beta reversal effect under the same

framework as Buss and Vilkov (2012).24 In order to be comparable to their study, we apply our

BR-adjusted beta to the same sample and using the same regression models. Following Buss

and Vilkov (2012), we sorting all 500 stocks into 50 portfolios according to their option-implied

beta Betaopt each month and compute their next month value-weighted portfolio returns and

current month value-weighted portfolio beta estimates. Results are reported in Table 10.

Insert Table 10 Approximately here

We first replicate Buss and Vilkov’s (2012) main result in Panel A of Table 10. When

regressing average portfolio returns on average option-implied betas in Model 1, the coefficient

estimate is 0.43%, which is very significant but somewhat higher than the market risk premium
24We are grateful to Professor Grigory Vilkov for providing us with the option-implied beta estimates.
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of 0.35% over the sample period from 1996 to 2009. As a comparison, we reconstruct the

portfolios according to our BR-adjusted beta Betaadj . A similar cross-sectional regression

reported in Model 2 of the same panel shows a even better result. The coefficient estimate of

0.36% is not only more significant but is also identical to the market excess return.

It is also possible that the particular sample used here does not suffer from the beta reversal

effect, which makes the option-implied beta to perform well. In order to test this possibility, we

also sort stocks into portfolios according to their rolling beta (Betar). As shown in Equation 3,

the coefficient estimate from a similar cross-sectional regression equation is as large as 0.28%

and is very significant, suggesting that the sample is less affected by beta reversal. To further

confirm this possibility, we compare the distribution of the Buss and Vilkov’s (2012) sample to

that of the sample that constructs the 25 beta-idiosyncratic-volatility sorted portfolios used in

Panel B of Table 5. As shown in Panel C of Table 10,25 the Buss and Vilkov’s (2012) sample

is not draw evenly across all stocks in each portfolio. In fact, most of their sample contains

stocks with very small beta and low idiosyncratic volatilities, which do not suffer much of the

beta reversal effect.

For the stocks that are subject to beta reversal in the Buss and Vilkov (2012) sample, we

cannot conclude whether the option-implied beta contains more relevant information than the

BR-adjusted beta from a univariate regression. Given the limitation of the data, we attempt

to reach a conclusion based on multivariate regression analysis. This exercise cannot be carried

out on a portfolio level as in Buss and Vilkov (2012) since most of the variations across different

measures will be averaged out causing a severe multicollinearity problem. In order to be close

to the spirit of original study, we perform pooled regression analysis on individual stock level

but and use double clustered standard errors on both the firm level and the time dimension

in Panel C of Table 10. When used alone, each of the beta measures is statistically significant

at the 1% level similar to those reported in Panel A. When the BR-adjusted beta is used

with the rolling beta, only the BR-adjusted beta is significant as expected. Similarly, when

the BR-adjusted beta is used with the option-implied beta, the letter becomes insignificant as

shown in Model 4. This is a direct evidence indicating that the option-implied beta mainly
25The number in each cell represents the percentage of stocks in the corresponding full sample beta-

idiosyncratic-volatility sorted portfolio goes to the Buss and Vilkov’s (2012) sample.
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reflects some of the beta-reversal effect in the sample.

5.2 The Wealth Effect and Beta Reversal

Evidence presented so far suggests that beta reversal is not only critical in contributing to the

failure of the market beta in the cross-sectional tests, but also independent of other factors. To

further demonstrate that the effect of beta reversal is unlikely to be a result of data snooping,

we now provide some evidence supporting economic links discussed in Section 2.4. The first

channel for beta reversal is the wealth effect proposed by Cochrane, Longstaff, and Santa Clara

(2008). We test this link indirectly by examining how changes in the market capitalization

(firm size), idiosyncratic volatility, and beta of an individual stock are related to each other

as predicted by the theory. Results are reported in Table 11.

Insert Table 11 Approximately here

As shown in Model 1 of Table 11, changes in market capitalizations of firms are positively

related to corresponding changes in their idiosyncratic volatilities. This contemporaneous

relation is very strong and significant. Moreover, a small portion of the increase in a firm’s

size is reversed in the next period as shown in Model 2. If such an increase in firm size results

in a temporary increase in beta as hypothesized, we have a case for beta reversal. In order to

be consistent with the discussion in Section 4.1, we use the daily beta estimate of Betad . As

shown in Model 3, a temporal increase in a firm size is strongly related to a temporal increase

in the firm’s beta estimate. Roughly a 2.7 times increase in a firm size is associated with a

0.526 increase in its beta. As firms with high idiosyncratic risks tend to have large beta (see

Model 4), changes in beta might also be a result of an increase in idiosyncratic risk directly.

The size variable in Model 5 is still very significant although reduced to 0.407 after controlling

for idiosyncratic volatility.

In order to establish beta reversal, it is also important to know if such a temporary increase

in beta disappears in the future. We therefore study how a temporal increase in firm size affects

the firm’s future beta. Model 6 of Table 11 shows that changes in beta are negatively related
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to increases in firm size in the past. We can also see from Model 7 that both the temporary

increase in beta and the post reversal exist simultaneously. Although the lagged idiosyncratic

volatility change becomes insignificant, all other variables continue to be very significant with

consistent signs. Therefore, the wealth effect is likely to drive beta reversal.

There are two caveats. First, despite stocks with a high level of idiosyncratic risk tend to

experience large changes in their idiosyncratic volatilities, and are more likely to be traded by

speculators, it is unlikely that the same set of stocks is of interest every period. This means

that beta reversal is likely to occur in different stocks from time to time. Second, the relative

change in the market capitalization of a stock in the market portfolio tends to be small, which

is unlikely to cause a large change in beta and the subsequent reversal. However, the wealth

effect might have had a positive feedback effect or interact with other factors discussed next.

5.3 Earnings Announcement and Beta Reversal

As discussed in Section 2.4, the second channel for beta reversal is uncertainty surrounding

an earnings announcement as proposed by Patton and Verardo (2012). Therefore, an indirect

but simple test of the earning announcement effect on beta reversal is to compare the beta

reversal effect in a sample without earnings announcement events to that in a sample with

the earnings announcement events. To implement, we define a dummy variable to be one

for firm without experiencing earnings announcements in the month, and zero otherwise. We

then include the dummy variable in regression analysis to separate the pricing effects with

and without earnings announcements in Table 12.

Insert Table 12 Approximately here

Since quarterly financial reports began in 1971, our sample in this section begins in the

same year. We accordingly first redo some of the regression analysis in Table 6 here. The

beta reversal effect continues to be strong with a risk premium estimate close to the sample

mean when comparing the main result from Model 1 of Table 12 to that of the same equation

in Table 6. Such a risk premium estimate is not affected when either controlling for the Fama
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and French factors in Model 2 or controlling for all other factors in Model 3. However, the

reversal effect does seem to be smaller. The coefficient estimate for the interaction term drops

from −0.029 in Model 1 to −0.019 in Model 3.

As hypothesized, the reversal effect should be stronger during earnings announcement

months. When including the dummy variable and its interaction with the reversal variable in

Model 5, this is exactly the case with a reversal estimate of −0.036. In contrast, the three-way

interaction term representing the incremental reversal effect during the non-announcement

month is positive. It is also true that the estimated market risk premium should not be

different during the announcement or non-announcement periods. The last equation of Table

12 shows that the premium difference is not significant from zero. Therefore, the earnings

announcement effect is likely to be a driving force for beta reversal.

5.4 Real Options and Beta Reversal

Another possible explanation for beta reversal is related to real growth options. As discussed

in Section 2.4, we can test its implication by linking changes in firms’ beta estimates to their

characteristics such as, size, book-to-market ratio, and firm age under the assumption that

firms are more likely to realize their growth options when they possess more. Results are

reported in Table 13.

Insert Table 13 Approximately here

As expected, growth firms with large beta estimates are more likely to experience beta

drops than value firms as shown in the second equation. This is true even when controlling for

other firm characteristics (see Model 5). Similarly, young firms are more likely to experience

beta reversal than mature firms as shown in the third equation. Although small firms are also

likely to realize real options, the effect is insignificant no matter whether the size variable is

used alone (see Model 1) or with other control variables (see Model 4). One possible reason

for the insignificant estimate is that small firms might have limited real options to begin with.

We also include the lagged beta change in the cross-sectional regression analysis since beta
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estimates are persistent.26 When all variables, including size, book-to-market, and age, are

used in the same model (see Model 7), the same pattern continues with the right signs.27

Therefore, exercising real options is also a contributing factor.

6 Robustness Study

Too often we see that results from some studies are challenged when applying different mea-

sures or different samples. Despite our strong results and the use of popular control variables

in our analysis, we continue to investigate the robustness of our results. In fact, one effective

way to alleviate the data snooping or data mining concern is to use different measures of beta

and idiosyncratic volatility, and to apply different samples and over different sample periods.

6.1 Other Popular Estimates of Beta

The rolling beta estimate used in our main study may not be an efficient estimate of the true

beta. It is possible that our significant results are driven by some unknown correlation between

the noise in the beta estimate and pricing errors. We therefore examine two alternative

estimates of beta. Since either the data frequency or the estimation method used to construct

these measures are different, the possible correlation is unlikely to be repeated. The first

measure is the post-ranking portfolio beta, Betap, which is commonly used in cross-sectional

regression analysis to reduce the error-in-variables bias. Although this measure is still time-

varying, some of the short-term variations not related to sorting variables might be lost.

Moreover, it may conceal important information contained in an individual stock’s beta as

pointed out by Ang, Schwarz, and Liu (2010). We therefore apply a second estimate of beta

based on daily individual stocks’ returns. In particular, we use the past three months of

daily returns to estimate Betad,−3 in order to reduce possible market microstructure effect

and to avoid high cross-sectional correlation between beta and idiosyncratic volatility, which

is estimated using one month of data. The cross-sectional regression results are reported in
26Without such a control, estimates might be biased due to correlations between residuals and firm charac-

teristics.
27When a firm is likely to accumulate growth options, for example firms with liquid asset, its beta will

increase instead, which is why we also control for illiquidity in our cross-sectional regression analysis.
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Panel A of Table 14 for portfolio beta Betap and in Panel B for the Betad,−3 measure.

Insert Table 14 Approximately Here

The overall results are very similar to those reported in Table 6. The estimate on Betap

remains insignificant when used alone although the estimate has increased somewhat com-

pared to that in the Fama and French (1992) (see Model 2 of Table 14). While idiosyncratic

volatility is indeed significant and negative consistent with Ang, et. al. (2006), beta remains

insignificant shown in Equation 3. In contrast, when only controlling for the beta reversal

effect in Model 1, the portfolio beta becomes significant again with the coefficient estimate of

0.9%.28 With control of the size and book-to-market factors, this estimate drops significantly

to 0.5%, consistent with the average market risk premium of 0.44%. Further controlling for

return reversal, momentum, and liquidity does not affect the significance of the market beta.

When using the second alternative beta measure, Betad,−3, in Panel B of Table 14, the

beta reversal effect is again very significant with the coefficient estimate for the beta variable

close to the market excess return when all control variables are included in the regression

analysis (see Model 5). Despite the pluses and minuses of each measure of beta, our main

results continue to hold significantly. This suggests that the performance of beta in cross-

sectional regression analysis relies not only on the accuracy of the beta estimate but, more

important, on how it captures the beta reversal feature as well.

6.2 Alternative Estimates of Idiosyncratic Volatility

Idiosyncratic risk plays an important role in our study both theoretically and empirically.

However, it is unobservable and must be estimated with respect to an asset pricing model.

In addition to the popular realized idiosyncratic volatility measure, Betad , used to obtain

our main results, several other measures of idiosyncratic volatility have been proposed in the

literature. For example, Bali et. al. (2009) use the rolling realized idiosyncratic volatility

measure. We have tried the same measure, and find that the overall results are surprisingly
28These large estimates could be a result of omitting other factors in the regression.
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similar to those reported in Table 6. To save space we do not report these results.29

As advocated by Campbell, et. al. (2001), a model-free approach to estimate idiosyncratic

risk may be more efficient. However, their approach is difficult to implement in our case since

we focus on individual stocks. One possible alternative is to use the total volatility as a

proxy for idiosyncratic risk since idiosyncratic risk counts more than 90% of the variations in

individual stocks’ daily return movement. All things being equal, using total volatility as a

proxy for idiosyncratic risk will bias us against finding supportive evidence for the pricing of

the market risk since the total volatility contains the market risk. To implement, we replace

the IVd variable in Table 6 with total volatility TVd estimated using individual stocks’ daily

returns within a month. Results are reported in Table 15.

Insert Table 15 Approximately here

When comparing each equation in Table 15 to the corresponding equations in Table 6, we

see that both the coefficient estimates for the market beta and the controlling variables are

surprisingly similar, except for the total volatility variable itself. Since total volatility contains

market risk which has a positive risk premium, the negative effect on total volatility becomes

smaller. Similarly, the estimates on the interaction term reflecting beta reversal also become

smaller in magnitude, reflecting a noisy proxy for idiosyncratic risk. Our general conclusion

is therefore very robust and not affected by a particular measure of idiosyncratic risk.

6.3 Stock Exchanges and Subsample Periods

Since beta reversal is likely to occur among stocks with certain characteristics, its effect might

be different for stocks traded on different exchanges. Stocks traded on the NYSE exchange tend

to be large and mature firms, while AMEX/NASDAQ firms are usually small and/or young

firms that might be subject to greater speculation. We therefore examine the significance of

the beta variable for the two markets. Results are reported in Panels A an B of Table 16for
29Another measure used in the literature is the Fu’s (2009) conditional idiosyncratic volatility (the EGARCH

estimate). We do not adopt such a measure because of the potential forward-looking bias and its focus on the
pricing effect for idiosyncratic volatility itself. As discussed in Section 3.2, beta reversal is more likely to be
related to the mispricing effect of idiosyncratic volatility instead.
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the NY SE and AMEX/NASDAQ stocks, respectively. For comparability, we use the same

measure of beta and idiosyncratic volatility as in Table 6.

Insert Table 16 Approximately here

When the beta variable is used alone, it is insignificant for stocks traded in both exchange

markets. Including the size, book-to-market, and idiosyncratic volatility in Model 3 of Table

16 does not change the significance of beta. Although the book-to-market variable is significant

for both groups of stocks, the size variable is only marginally significant for the NASDAQ

stocks. When controlling for the interaction term in Model 1, the beta variable becomes

significant for both groups of stocks. However, the coefficient estimate is smaller for the

NASDAQ stocks than for the NY SE/AMEX stocks. Finally, with all control variables, the

coefficient estimates for the market beta are 0.4% and 0.3 for NY SE/AMEX and NASDAQ,

respectively. The results are therefore stronger for large and mature firms than for young firms.

One possible reason for the difference is that beta instability is much larger for NASDAQ stocks

than NYSE/AMEX stocks in addition to beta reversal.

The behavior of idiosyncratic volatility has changed significantly in the past decade as

documented in Campbell, and et. al. (2001). At the same time, the explanatory power of

the market factor becomes less significant in explaining the time-series return variation. In

order to see if beta reversal is still important in recent years and how the pricing effect of the

market beta changes over time, we further examine two equal subsample periods from 1963

to 1986 and from 1987 to 2010. Panels C and D of Table 16 summarize the main results.

The explanatory power of the market beta continues to be strong in both subsample

periods after controlling for beta reversal (see Models 1 and 4). The coefficient estimates for

the beta variable are 0.5% and 0.4% for the first and second subsample periods, respectively,

consistent with the evidence on decreasing risk premia in recent years. Relatively speaking,

controlling for beta reversal is more important in the first subsample period than in the second

subsample period. It is also interesting to see that the size variable is insignificant in the second

subsample period, consistent with other studies. Our results are therefore also robust with

respect to different subsamples and sample periods.
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The phenomenon of beta reversal and its impact on asset pricing are thus pervasive,

independent of the way we estimate beta and idiosyncratic risk, and insensitive to different

subsamples. Once such a short-term beta reversal effect is controlled, the conventional beta

measure still matters significantly in differentiating cross-sectional returns of individual stocks.

7 Conclusion

In the absence of Roll’s critique, the failure of finding empirical support for the pricing role

of the market beta lead many researchers to conclude that the CAPM does not hold. Con-

sequently, many complicated remedies have been proposed with limited success. Given its

simplicity and the wide application in practice, we believe that the CAPM model might hold

in the first order. Different from existing approaches, we find that the explanatory power of

market betas is strong for most stocks except for a small group of stocks whose betas reverse

over time. This group of stocks tends to have both high systematic and idiosyncratic risks.

As a result, current market betas may not be associated with future returns even when the

CAPM holds period by period in a dynamic setting. This is especially problematic when the

beta estimate carries large noise. We offer simple solutions by either directly controlling for

beta reversal, or using predicted betas, or adopting adjusted betas in a cross-sectional setting

to restore the explanatory power of market betas.

We demonstrate that the market beta is not only significant in predicting future returns

under a very robust setting after controlling for beta reversal, but the coefficient estimate from

cross-sectional regression analysis is very close to the actual market risk premium over the

same sample period as predicted by the CAPM theory. The mechanism behind beta reversal

is very different from others, such as time-varying beta, the betting-against-beta factor of

Frazzini and Pedersen (2013), and forward-looking factor of Buss and Vilkov (2012). From an

empirical perspective, our beta reversal effect dominates all these factors.

In addition, we show both directly and indirectly that beta does reverse significantly

from period to period, and the magnitude of the reversal can be predicted by an interaction

term between beta and idiosyncratic volatility. To understand the economics behind beta
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reversal, we propose several channels that can drive such a reversal, including the wealth effect

of Cochrane, Longstaff, and Santa Clara (2008), the earnings announcement uncertainty of

Patton and Verardo (2012), and the real growth option effect (Cooper and Priestley, 2011).

These plausible “causes” are also supported by our empirical evidence. Therefore, our results

are unlikely affected by the potential data snooping bias.

Our finding of beta reversal is also useful to reconcile the contradictory evidence from

current literature between the large time-series explanatory power of the market factor and

weak cross-sectional explanatory power of the market beta. From a cross-sectional perspective,

future returns will be low for a stock with a high current beta estimate even when the CAPM

holds period-by-period. With proper control for beta reversal, the market beta continues to

be the most important risk measure in pricing risky assets. We hope that future research

will offer additional insights and identify other channels for beta reversal, as well as provide a

better way to construct the beta reversal factor. Based on our evidence, we believe that the

fundamental beta-return relation holds, at least in the first order, but the relation is likely to

be distorted by a small group of stocks with a high degree of beta reversal from time to time.
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Table 1: Idiosyncratic Volatility and Beta Sorted Portfolio Returns

This table shows the average stock returns for the 25 equal-weighted portfolios by first sorting individual stocks
according to their beta estimates (Betar) and then according to their idiosyncratic volatilities IVd. Betar is
estimated using the past 60 monthly returns as in Fama and French (1992); and IVd is computed based on
the daily residual stock returns in the past month with respect to the Carhart’s four-factor model (see Ang
et al, 2006). The sample period ranges from July 1963 to December 2010. H − L represents the portfolio
return difference between the highest and lowest portfolios. The robust Newey West t-statistic is reported in
the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Row{IVd}; Column{Betar}
1(low) 2 3 4 5(High) H-L

1(Low) 0.89 1.05 1.15 1.13 1.31 0.43*
(5.65) (6.96) (6.31) (5.58) (4.77) (1.85)

2 1.09 1.25 1.28 1.38 1.41 0.32
(6.11) (6.88) (6.72) (6.42) (4.21) (1.07)

3 1.21 1.33 1.37 1.52 1.38 0.17
(5.85) (6.92) (6.35) (5.53) (3.97) (0.58)

4 1.23 1.42 1.39 1.23 1.17 -0.06
(5.57) (6.25) (5.54) (4.09) (3.16) (-0.23)

5(high) 1.26 1.29 1.17 0.90 0.62 -0.64**
(3.82) (4.35) (3.59) (2.43) (1.47) (-2.24)

H-L 0.37 0.24 0.02 -0.23 -0.70**
(1.33) (1.04) (0.07) (-0.82) (-2.61)

Table 2: Summary Statistics

This table provides summary statistics for variables used in this study. The sample period spans from July 1963
to December 2010. RET is the monthly. Betar represents an individual stock’s rolling beta estimated from a
market model using the past 60-month stock returns. Betap is the portfolio beta, estimated following Fama
French (1992). Beta(d,−1) and Beta(d,−3) are the monthly rolling beta estimated using a stock’s daily returns
within either the last month or the last three months. IVd is the monthly realized idiosyncratic volatility using
the past month daily residual returns with respect to the Carhart’s four-factor model (see Ang et al, 2006). IVr

is the rolling realized idiosyncratic volatility computed following Bali and Cakici (2009). Ln(ME) is a stock’s
log market capitalization (ME) of the last June, and Ln(BM) is the log of the fiscal year-end book value of
equity divided by the calendar year-end market value of equity. RET(−2,−7) is the compounded gross return
from months t − 7 to t − 2 (inclusive). Illiq is the Amihud illiquidity measure defined in Amihud (2002) and
calculated in year t − 1. P25 and P75 represent the 25% and the 75% percentile, respectively. To control for
the potential data errors and extreme values, all variables are winsorized at the 0.5% and 99.5% levels.

Mean STD P25 Median P75

RET 0.012 0.159 -0.067 0.000 0.075
Betar 1.160 0.740 0.687 1.090 1.544
Betap 1.358 0.332 1.139 1.330 1.623

Beta(d,−1) 0.737 1.374 0.066 0.666 1.368
Beta(d,−3) 0.761 0.868 0.238 0.695 1.229

IVd 0.127 0.108 0.060 0.096 0.157
IVr 0.126 0.072 0.076 0.109 0.157
TV 0.151 0.121 0.075 0.118 0.186

Ln(ME) 11.515 2.154 9.918 11.362 13.001
Ln(BM) -0.466 0.965 -0.989 -0.379 0.165

RET(−2,−7) 0.078 0.431 -0.156 0.027 0.228
Illiq 0.056 0.242 0.000 0.002 0.020
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Table 3: Transition Probability Matrix of Beta

This table shows the transition probability matrices of beta among different groups of stocks. They are
estimated by first sorting individual stocks into five groups by their idiosyncratic volatility IVd each month.
All stocks are also sorted separately into three groups according to their Betad,−1 estimated using daily returns
within a month to determine the breakpoints. Stocks in the lowest (highest) idiosyncratic volatility group are
then sorted into three groups according to the beta breakpoints. Stocks in each beta-group are traced to the
next period and are assigned into three groups according to their persistence adjusted beta. The transition
probability matrix of beta changing from group i in month t to group j in month t + 1 can then be calculated.
Since stocks in each group in month t are uneven, the number reported in bracket is computed with respect to
all stocks. Panels A and B report the probability matrix for lowest and highest idiosyncratic volatility groups,
respectively.

Panel A: Lowest IVd Decile

Betad,−1 Small Median Large

Small 0.33 (0.12) 0.47 (0.17) 0.20 (0.07)
Median 0.31 (0.14) 0.47 (0.21) 0.22 (0.10)
Large 0.26 (0.05) 0.42 (0.08) 0.32 (0.06)

Panel B: Highest IVd Decile

Small 0.30 (0.12) 0.17 (0.07) 0.53 (0.21)
Median 0.40 (0.06) 0.20 (0.03) 0.40 (0.06)
Large 0.53 (0.24) 0.16 (0.07) 0.31 (0.14)

Table 4: Relationship between Beta and Idiosyncratic Volatility

This table presents the Fama-MacBeth regression results from regressing beta on the past beta and idiosyncratic
volatility. The dependent variable is beta (Betad) estimated using daily stock returns within the month. IVd is
the idiosyncratic volatility measure estimated based on the daily residual stock returns from the past month with
respect to the Carhart’s four-factor model (see Ang et al, 2006). Beta(d,−3) is estimated using the past three
month daily returns. Betad,−1 ∗ IVd,−1 is the interaction term between the last period beta and idiosyncratic
volatility. The robust Newey West t-statistic is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

Panel A: 1 Month

Model 1 Model 2

Betad,−1 0.242*** 0.365***
(10.35) (11.80)

Betad,−1 ∗ IVd,−1 -0.596***
(-5.10)

Panel B: 3 Months

Model 1 Model 2

Betad,−3 0.450*** 0.560***
(13.71) (18.17)

Betad,−3 ∗ IVd,−1 -0.562***
(-3.53)
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Table 5: Sorted Portfolio Returns

This table shows the average stock returns for the 25 equal-weighted portfolios. Portfolios in Panels A and
B are formed by sorting individual stocks according to their beta estimates (Betar) and the book-to-market
ratios (B/M) simultaneously. Betar is estimated using the past 60 monthly returns as in Fama and French
(1992). In Panel A, we use all stocks in the sample, while in Panel B we delete the four portfolio with the
largest beta estimates and idiosyncratic volatilities (stocks in the lower right corner of Table 1). The sample
period ranges from July 1963 to December 2010. H − L represents the portfolio return difference between the
highest and lowest portfolios. Portfolio returns are computed using equal weights. The robust Newey West
t-statistic is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1%
levels, respectively.

Panel A: Using Full Sample
Row{B/M}; Column{Betar}

1(low) 2 3 4 5(High) H-L

1(low) 0.75 0.95 0.81 0.75 0.70 -0.05
(2.97) (4.71) (3.46) (2.71) (1.95) (-0.21)

2 0.84 1.05 1.12 1.15 1.07 0.23
(4.20) (5.48) (5.37) (4.70) (3.20) (1.04)

3 1.09 1.21 1.30 1.23 1.43 0.33
(5.39) (6.36) (5.89) (4.87) (4.38) (1.30)

4 1.22 1.28 1.50 1.53 1.49 0.28
(6.18) (6.56) (6.57) (5.67) (4.40) (1.29)

5(high) 1.55 1.74 1.56 1.57 1.77 0.22
(6.67) (6.76) (5.86) (5.09) (5.15) (0.92)

H-L 0.81*** 0.80*** 0.75*** 0.82*** 1.07***
(4.23) (4.86) (3.80) (4.24) (4.94)

Panel B: Using Reduced Sample

1 0.70 1.01 0.89 0.90 1.02 0.32*
(2.67) (4.89) (4.41) (3.74) (3.63) (1.73)

2 0.84 1.06 1.16 1.19 1.30 0.46***
(4.00) (5.31) (5.99) (5.41) (4.91) (2.78)

3 1.09 1.13 1.24 1.28 1.41 0.32**
(5.37) (6.18) (5.92) (5.98) (5.75) (2.12)

4 1.21 1.26 1.45 1.48 1.62 0.42***
(5.88) (6.77) (6.85) (6.42) (6.40) (2.96)

5 1.54 1.64 1.69 1.53 1.72 0.18
(6.45) (6.70) (6.22) (5.93) (6.41) (1.25)

H-L 0.84*** 0.63*** 0.79*** 0.63*** 0.69***
(4.06) (3.58) (4.48) (3.15) (3.12)
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Table 6: Fama-MacBeth Regression Analysis for Individual Stocks

This table presents the Fama-MacBeth regression results for monthly individual stock returns on different
factors. These factors include Betar estimated using the last 60 monthly returns, idiosyncratic volatility
IVd estimated based on the daily residual stock returns from the past month with respect to the Carhart’s
four-factor model (see Ang et al, 2006), the log market capitalization Ln(ME) of the last June, the log of
book-to-market Ln(BM), the last month return RET(−1) , the compounded gross return from months t− 7 to
t−2 (inclusive) RET(−2,−7) , and the Amihud illiquidity measure defined in Amihud (2002) Illiq. Betar ∗IVd is
the interaction term between beta and idiosyncratic volatility. In order to control for the potential data errors
and extreme values, all variables are winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend
and split-adjusted in percentages. The robust Newey West t-statistic is reported in the bracket. The symbols
∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

IVd 0.024 -0.047*** -0.005 0.002 -0.008
(1.26) (-4.98) (-0.37) (0.15) (-0.59)

Betar ∗ IVd -0.037*** -0.034*** -0.028*** -0.026***
(-4.3) (-4.14) (-3.67) (-3.45)

Betar 0.005*** 0.001 0.001 0.002 0.006*** 0.004*** 0.004***
(3.13) (0.49) (0.67) (1.49) (3.64) (2.84) (2.97)

Ln(BM) 0.003*** 0.002*** 0.002*** 0.003*** 0.002***
(4.23) (3.78) (4.01) (3.94) (3.71)

Ln(ME) -0.001 -0.001*** -0.001*** -0.001** -0.001**
(-1.63) (-3.34) (-3.27) (-2.56) (-1.98)

RET(−1) -0.065*** -0.065***
(-8.86) (-8.76)

RET(−2,−7) 0.006** 0.006**
(2.51) (2.50)

Illiq 0.033**
(2.53)
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Table 7: Fama-MacBeth Regression Analysis Using the Predicted Beta or Adjusted
Beta

This table presents the Fama-MacBeth regression results from regressing future returns on predicted beta or

beta-reversal-adjusted beta. The predicted beta ̂Beta is computed based on Model 2 in Panel A of Table 4.
The beta-reversal-adjusted beta Betaadj is estimated based on a two-factor model of Equation 12 that includes
both the market and beta-reversal factors. Betar is the rolling beta estimate from a market model using the
last 60 monthly returns. Idiosyncratic volatility IVd estimated based on the daily residual stock returns from
the past month with respect to the Carhart’s four-factor model (see Ang et al, 2006). Other control variables
include the log market capitalization Ln(ME) of the last June, the log of book-to-market Ln(BM), the last
month return RET(−1) , the compounded gross return from months t − 7 to t − 2 (inclusive) RET(−2,−7) , and
the Amihud illiquidity measure defined in Amihud (2002) Illiq. In order to control for the potential data errors
and extreme values, all variables are winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend
and split-adjusted in percentages. The robust Newey West t-statistic is reported in the bracket. The symbols
∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

Panel A: Using Predicted Beta
̂Beta 0.004** 0.007*** 0.009*** 0.008*** 0.009***

(2.34) (3.12) (4.24) (3.93) (4.19)
Ln(BM) 0.003*** 0.003*** 0.003*** 0.003***

(4.97) (4.50) (4.39) (4.14)
Ln(ME) -0.001** -0.002*** -0.002*** -0.002***

(-1.98) (-4.01) (-3.39) (-2.95)
IVd -0.060*** -0.042*** -0.052***

(-5.96) (-4.58) (-5.57)
RET(−1) -0.064*** -0.063***

(-8.8) (-8.73)
RET(−2,−7) 0.005** 0.005**

(2.13) (2.10)
Illiq 0.038***

(2.93)

Panel B: Using Adjusted Beta

Betar 0.001
(0.53)

Betaadj 0.002*** 0.002*** 0.002*** 0.002***
(2.94) (3.20) (3.73) (4.05)

Ln(BM) 0.003*** 0.003*** 0.003*** 0.003*** 0.003***
(4.31) (4.19) (3.70) (3.93) (3.47)

Ln(ME) -0.001 -0.001 -0.002*** 0.000 -0.001*
(-1.60) (-1.59) (-3.32) (-0.66) (-1.96)

IVd -0.045*** -0.038***
(-4.11) (-3.61)

RET(−1) -0.063*** -0.063***
(-8.70) (-8.62)

RET(−2,−7) 0.006** 0.005**
(2.30) (2.18)

Illiq 0.033** 0.039***
(2.40) (2.70)
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Table 9: Fama-MacBeth Regression Analysis Using the BAB-Adjusted Beta

This table presents the Fama-MacBeth regression results from regressing future returns on the BAB (Betting-
Against-Beta) factor adjusted beta, BetaBAB. It is estimated based on a two-factor model that includes
both the market and BAB factors. Betar is the rolling beta estimate from a market model using the last 60
monthly returns. Idiosyncratic volatility IVd estimated based on the daily residual stock returns from the past
month with respect to the Carhart’s four-factor model (see Ang et al, 2006). Other control variables include
the log market capitalization Ln(ME) of the last June, the log of book-to-market Ln(BM), the last month
return RET(−1), the compounded gross return from months t − 7 to t − 2 (inclusive) RET(−2,−7) , and the
Amihud illiquidity measure defined in Amihud (2002) Illiq. In order to control for the potential data errors
and extreme values, all variables are winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend
and split-adjusted in percentages. The robust Newey West t-statistic is reported in the bracket. The symbols
∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

Betar 0.001
(0.53)

BetaBAB -0.001 -0.002 -0.001 -0.002
(-0.73) (-1.52) (-0.91) (-1.56)

Ln(BM) 0.003*** 0.003*** 0.002*** 0.003*** 0.002***
(4.31) (4.30) (3.85) (4.08) (3.62)

Ln(ME) -0.001 -0.001 -0.002*** -0.000 -0.001*
(-1.60) (-1.61) (-3.31) (-0.67) (-1.97)

IVd -0.047*** -0.039***
(-4.78) (-4.09)

RET(−1) -0.067*** -0.066***
(-8.80) (-8.64)

RET(−2,−7) 0.006** 0.006**
(2.60) (2.45)

Illiq 0.028** 0.036***
(2.41) (2.82)
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Table 10: Beta-Reversal-Adjusted Beta versus Option-implied Beta

This table compares the explanatory power of our beta-reversal adjusted beta Betaadj with the option-implied
beta (defined in the Section 3.2) Betaopt proposed by Buss and Vilkov (2012). Cross-sectional regression
analysis on 50 beta sorted portfolios are used in Panel A, while pooled regression analysis with clustering on
both firm and month is applied in Panel B. Portfolios are formed either by sorting individual stocks each month
on either their beta-reversal adjusted beta, option-implied beta, or rolling monthly beta Betar. Panel C reports
the percentage of individual stocks from the Buss and Vilkov’s (2012) study that fall into the corresponding
groups constructed using our full sample of stocks. Following Buss and Vilkov (2012), the sample used in Panel
A covers S&P500 firms from 1996 to 2009. The robust Newey West t-statistic is reported in the bracket. The
symbols ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Replication of Buss and Vilkov’s (2012) Results for 50 Portfolios

Model 1 Model 2 Model 3

Betaopt 0.0043***
(3.12)

Betaadj 0.0036***
(3.59)

Betar 0.0028***
(3.21)

Panel B: Pooled Regression with Cluster Adjustment

Model 1 Model 2 Model 3 Model 4 Model 5

Betaopt 0.004** 0.001
(2.33) (0.68)

Betaadj 0.005*** 0.005*** 0.005***
(4.84) (4.10) (4.34)

Betar 0.002*** 0.001
(2.65) (-0.14)

Panel C: Distribution of Buss and Vilkov’s (2012) sample w.r.t. Our Sample

Column{Betar}; Row{IVd}
1(low) 2 3 4 5(High)

1(low) 0.10 0.06 0.03 0.01 0.00
2 0.13 0.08 0.04 0.01 0.00
3 0.13 0.07 0.03 0.01 0.00
4 0.09 0.05 0.02 0.01 0.00

5(High) 0.06 0.03 0.01 0.01 0.00
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Table 11: Beta Reversal and the Wealth Effect

This table presents the Fama-MacBeth regression results for the contemporaneous and predictive relations
among a change in beta (ΔBetad), change in idiosyncratic volatility (ΔIVd), and change in firm size
(Δln(MEm)). Betad is estimated using daily returns in a month. ΔIVd,−1 and IVd refer to the last and
the current month’s idiosyncratic volatility, respectively. Δln(MEm,−1) and Δln(MEm) are the last and cur-
rent month’s firm size. The robust Newey West t-statistic is reported in the bracket. The symbols ∗, ∗∗, and
∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively.

Independent Δln(MEm) as Dep. Var. ΔBetad as Dep. Var.
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

ΔIVd 0.255*** 1.760*** 1.584*** 1.535***
(8.29) (7.38) (7.42) (7.04)

ΔIV(d,−1) -0.061*** -0.690*** -0.049
(-4.36) (-7.07) (-0.78)

Δln(MEm) 0.526*** 0.407*** 0.408***
(7.13) (6.42) (6.58)

Δln(ME(m,−1)) -0.301*** -0.178***
(-4.89) (-3.39)
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Table 12: Beta Reversal and Earnings Announcement

This table presents the Fama-MacBeth regression results that differentiate the effect of earnings announcement.
The sample period ranges from 1971 to 2010. The earnings announcement dummy Dum is set to 1 for the firm
without an earnings announcement in month t, and 0 otherwise. The regressors include Betar estimated using
the last 60 monthly returns, idiosyncratic volatility IVd estimated based on the daily residual stock returns
from the past month with respect to the Carhart’s four-factor model (see Ang et al, 2006), the log market
capitalization Ln(ME) for the last June, the log of book-to-market Ln(BM), the last month return RET(−1),
the compounded gross return from months t − 7 to t − 2 (inclusive) RET(−2,−7) , and the monthly Amihud
illiquidity measure defined in Amihud (2002) Illiq. Betar ∗ IVd is the interaction term between beta and
idiosyncratic volatility. In order to control for the potential data errors and extreme values, all variables are
winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend and split-adjusted in percentages. The
robust Newey West t-statistic is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote significance at
the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

IVr 0.012 -0.011 -0.012 -0.012 0.011
(0.82) (-1.15) (-1.16) (-1.18) (0.82)

Betar ∗ IVr -0.029*** -0.025*** -0.019*** -0.023*** -0.036***
(-4.15) (-4.32) (-3.35) (-4.06) (-4.84)

Betar 0.004** 0.005*** 0.004** 0.003** 0.004**
(2.56) (3.17) (2.42) (2.19) (2.41)

Ln(BM) 0.003*** 0.003*** 0.003*** 0.003***
(4.06) (3.68) (3.57) (3.55)

Ln(ME) -0.001*** -0.001 -0.001** -0.001**
(-2.92) (-1.55) (-2.13) (-2.08)

RET(−1) -0.065*** -0.065*** -0.065***
(-7.72) (-7.71) (-7.74)

RET(−2,−7) 0.004 0.004 0.004
(1.56) (1.52) (1.51)

Illiq 0.021*** 0.021*** 0.022***
(3.83) (3.90) (3.85)

Dum -0.008*** -0.005***
(-10.97) (-4.78)

Betar ∗ IVr ∗ Dum 0.008** 0.023***
(2.03) (2.91)

IVr ∗ Dum -0.029***
(-2.88)

Betar ∗ Dum -0.001
(-1.25)
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Table 13: Relationship between Change in Beta and Firms’ Characteristics

This table presents the Fama-MacBeth regression results from regressing change in beta this month on firms’
characteristics in the last month. These firms characteristics includes the log of book-to-market Ln(BM) and
the log of firm age ln(Age). Other firms characteristics includes the change in firm’s beta,ΔBeta, defined as a
difference between the current montht beta and the last month beta; the log market capitalization Ln(ME) of
the last June, last month return RET(−1) , the compounded gross return from months t− 7 to t− 2 (inclusive)
RET(−2,−7) , the Amihud illiquidity measure defined in Amihud (2002) Illiq . In order to control for the
potential data errors and extreme values, all variables are winsorized at the 0.5% and the 99.5% level. Monthly
returns are dividend and split-adjusted, in percentages. The robust Newey West t-statistic is reported in the
bracket. The symbols ∗, ∗∗, ∗ ∗ ∗ denote significance level at the 10%, 5%, and 1%, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Ln(ME) 0.001*** 0.0000 0.000
(0.83) (0.29) (0.07)

Ln(BM) 0.004*** 0.004*** 0.004***
(3.04) (3.59) (2.94)

ln(Age) 0.004** 0.004*** 0.003***
(2.57) (3.24) (2.76)

ΔBeta -0.492*** -0.492*** -0.492*** -0.492*** -0.492*** -0.492*** -0.492***
(-164.83) (-162.19) (-161.82) (-171.37) (-169.86) (-169.15) (-173.43)

RET(−1) -0.052 -0.039 -0.044 -0.052
(-0.96) (-0.74) (-0.83) (-0.98)

RET(−2,−7) -0.029** -0.031** -0.029** -0.032**
(-2.25) (-2.50) (-2.45) (-2.55)

Illiq -0.224** -0.113 -0.127 -0.210**
(-2.10) (-2.34) (-1.53) (-2.11)
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Table 14: Cross-sectional Regression Analysis with Alternative Beta Measures

This table presents the cross-sectional regression results using an alternative beta measure. These measures
include the portfolio beta Betap estimated following Fama and French’s (1992) method, and the rolling beta
Beta(d,−3) estimated using the past three month daily returns. Other regressors include idiosyncratic volatility
IVd estimated based on daily residual returns with respect to the Carhart’s four-factor model (see Ang et al,
2006), the log market capitalization Ln(ME) for the last June, the log of book-to-market Ln(BM), the last
month return RET(−1) , the compounded gross return from months t − 7 to t − 2 (inclusive) RET(−2,−7) , and
the monthly Amihud illiquidity measure defined in Amihud (2002) Illiq. Beta ∗ IVd is the interaction term
between beta and idiosyncratic volatility. In order to control for the potential data errors and extreme values,
all variables are winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend and split-adjusted in
percentages. The robust Newey West t-statistic is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4 Model 5

Panel A: Portfolio Beta

IVd 0.046** -0.047*** 0.007 0.005
(2.22) (-4.84) (0.46) (0.32)

Betap ∗ IVd -0.054*** -0.038*** -0.032***
(-4.45) (-3.65) (-3.03)

Betap 0.009*** 0.003 0.002 0.005** 0.005**
(3.03) (0.84) (1.02) (2.24) (2.00)

Ln(BM) 0.002*** 0.002*** 0.002***
(3.87) (3.99) (3.67)

Ln(ME) -0.001*** -0.001*** -0.001*
(-3.26) (-3.09) (-1.69)

RET(−1) -0.063***
(-8.64)

RET(−2,−7) 0.006**
(2.21)

Illiq 0.032**
(2.50)

Panel B: Individual Beta Using Three Month Daily Returns

IVd -0.007 -0.049*** -0.031*** -0.024***
(-0.46) (-5.21) (-3.5) (-2.62)

Beta(d,−3) ∗ IVd -0.019*** -0.024*** -0.021***
(-3.81) (-4.72) (-4.41)

Beta(d,−3) 0.003** 0.000 0.001 0.005*** 0.004***
(1.96) (-0.36) (1.46) (3.74) (3.07)

Ln(BM) 0.002*** 0.002*** 0.002***
(3.79) (3.93) (3.58)

Ln(ME) -0.002*** -0.002*** -0.001**
(-3.1) (-3.43) (-2.19)

RET(−1) -0.062***
(-8.5)

RET(−2,−7) 0.005**
(2.15)

Illiq 0.033**
-2.58
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Table 15: Cross-sectional Regression Analysis with Total Volatility

This table presents the cross-sectional regression results using total volatility. The regressors include Betar

estimated using the last 60 monthly returns, total volatility TV estimated based on daily residual return within
the last month, the log market capitalization Ln(ME) for the last June, the log of book-to-market Ln(BM),
the last month return RET(−1), the compounded gross return from months t−7 to t−2 (inclusive) RET(−2,−7) ,
and the monthly Amihud illiquidity measure defined in Amihud (2002) Illiq. Betap ∗ TV is the interaction
term between beta and total volatility. In order to control for the potential data errors and extreme values,
all variables are winsorized at the 0.5% and 99.5% levels. Monthly returns are dividend and split-adjusted in
percentages. The robust Newey West t-statistic is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote
significance at the 10%, 5%, and 1% levels, respectively.

Model 1 Model 2 Model 3 Model 4

TV 0.023 -0.040*** -0.001 -0.004
(1.34) (-4.38) (-0.06) (-0.32)

Betar ∗ TV -0.034*** -0.031*** -0.025***
(-4.9) (-4.81) (-4.01)

Betar 0.006*** 0.002* 0.006*** 0.005***
(3.86) (1.74) (4.51) (3.68)

Ln(BM) 0.002*** 0.002*** 0.002***
(3.78) (4.02) (3.71)

Ln(ME) -0.001*** -0.001*** -0.001*
(-3.21) (-3.14) (-1.81)

RET(−1) -0.065***
(-8.72)

RET(−2,−7) 0.006**
(2.50)

Illiq 0.032**
(2.50)
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Table 16: Cross-sectional Regression Analysis over Different Subsamples

This table presents the Fama-MacBeth regression results for different stock exchanges and over different sub-
sample periods. These regressors include Betar estimated using the last 60 monthly returns, idiosyncratic
volatility IVd estimated based on the daily residual stock returns from the past month with respect to the
Carhart’s four-factor model (see Ang et al, 2006), the log market capitalization Ln(ME) for the last June, the
log of book-to-market Ln(BM), the last month return RET(−1), the compounded gross return from months
t − 7 to t − 2 (inclusive) RET(−2,−7) , and the monthly Amihud illiquidity measure defined in Amihud (2002)
Illiq. Betap∗IVd is the interaction term between beta and idiosyncratic volatility. Results in Panel A are based
on NYSE stocks only, while those in Panel B are based on Amex/NASDAQ stocks only. Regression equations
in Panels C and D are for the first and second equally divided subsample periods, respectively. In order to
control for the potential data errors and extreme values, all variables are winsorized at the 0.5% and 99.5%
levels. Monthly returns are dividend and split-adjusted in percentages. The robust Newey West t-statistic
is reported in the bracket. The symbols ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels,
respectively.

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Panel A: NYSE Panel B: AMEX&NASDAQ

IVd 0.022 -0.051*** -0.018 -0.01 -0.034*** -0.020
(1.07) (-5.03) (-1.16) (-0.83) (-3.83) (-1.52)

Betar ∗ IVd -0.039*** -0.025*** -0.013*** -0.010**
(-3.91) (-2.75) (-2.95) (-2.06)

Betar 0.005*** 0.001 0.001 0.004** 0.003** 0.00 0.002 0.003*
(3.11) (0.44) (1.27) (2.51) (2.03) (0.00) (1.36) (1.87)

Ln(BM) 0.002*** 0.002*** 0.004*** 0.004***
(3.28) (3.15) (5.49) (4.91)

Ln(ME) -0.001*** -0.001* -0.001* 0.000
(-3.06) (-1.93) (-1.83) (-0.73)

RET(−1) -0.058*** -0.055***
(-6.93) (-9.48)

RET(−2,−7) 0.007*** 0.001
(2.60) (0.53)

Illiq 0.040*** 0.019***
(2.99) (2.77)

Panel C: 1963-1986 Panel D: 1987-2010

IVr 0.048 -0.067*** 0.004 0.001 -0.027*** -0.019
(1.40) (-4.87) (0.16) (0.06) (-2.95) (-1.48)

Betap ∗ IVr -0.060*** -0.045*** -0.015*** -0.008*
(-4.51) (-3.66) (-3.13) (-1.84)

Betar 0.007** 0.000 0.001 0.005** 0.004** 0.001 0.002 0.004**
(2.47) (0.03) (0.58) (2.21) (1.98) (0.75) (1.60) (2.00)

Ln(BM) 0.002** 0.002** 0.003*** 0.003***
(1.98) (2.13) (3.63) (3.31)

Ln(ME) -0.002*** -0.001* -0.001** -0.001
(-2.67) (-1.67) (-2.42) (-1.2)

RET(−1) -0.081*** -0.049***
(-7.5) (-7.77)

RET(−2,−7) 0.010*** 0.002
(3.47) (0.63)

Illiq 0.041* 0.025***
(1.66) (3.13)
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Figure 1: Average Return versus Market Beta for the 25 Size and Book-to-Market
Sorted Portfolios
This graph presents the relation between beta and the expected return of the 25 size and
book-to-market sorted portfolios. The expected return excess of risk-free rate is on the y axis
and the market beta is on the x axis. The whole sample is used in Panel A, while partial
sample described in Section 4.2 is used in Panel B.
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Panel B: With Controlling for Beta Reversal

Figure 2: Realized versus Expected Return Estimated for the 100 Beta and Id-
iosyncratic Volatility Sorted Portfolios
This graph presents the relation between the realized and expected returns of the 100 beta-
idiosyncratic volatility sorted portfolios. The expected return in Panel A is estimated from
cross-sectional regression equations using rolling beta estimates and the realized idiosyncratic
volatilities of individual stocks only, while the expected return in Panel B is estimated from
cross-sectional regression equations using rolling beta estimates, the realized idiosyncratic
volatilities, and the interaction between beta and idiosyncratic volatility of individual stocks
(see Section 4.5). The expected return is on the y axis and the realized return is on the x
axis.
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