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Abstract

A revenue maximizing mechanism designer chooses a mechanism in the primary

market to sell an object to privately informed entrants. The winning entrant then

engages in Cournot competition with an incumbent in the aftermarket. The designer

has perfect control in the primary market but imperfect control in the aftermarket. We

fully characterize optimal mechanisms under general conditions. When the designer

has “partial control” in the aftermarket, the constructed optimal mechanism is deter-

ministic and the designer fully reveals the winning entrant’s private production cost to

the incumbent. When the designer has “no control” in the aftermarket, similar results

hold.
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Moral Hazard.

JEL Classifications: C72, D44, D82, D83, L12

1 introduction

Mechanism designers, who in real life could be firms, franchise companies, governments,

patent owners, etc., often face players who will involve in certain aftermarket interactions.

For example, after VoiceStream Wireless sold itself to Deutsche Telekom AG in 2001 for

$35 billion and became T-Mobile USA, Inc. in July, 2002, it had to compete with other

nationwide telecoms such as AT&T Mobility. When a new franchise for McDonald’s is

issued to an entrant, it needs to face competitors such as KFC in the fast food industry.

When a government issues a licence to a firm to operate, this firm needs to interact with

other firms already in the industry. When an owner of a cost reducing technology sells her

patent to competing firms, those firms need to interact after the patent is acquired.

The common observation is that although the mechanism designers have relatively strong

power in the primary market in determining how to sell the object, they usually have im-

perfect control over the aftermarket interactions. For instance, there is no evidence that

Voicestream Wireless (or McDonald’s) could intervene AT&T’s (or KFC’s) business deci-

sions in the aftermarket. Nevertheless, the mechanism designers can influence the outcome

in the aftermarket by revealing certain information obtained in the primary market to the

aftermarket. For example, VoiceStream Wireless can choose whether to reveal the purchase

price of $35 billion to the public. Similarly, when a franchise is auctioned off among the

entrants, the bids contain the entrants’ private information. As a result, the designer can at
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least choose whether or not to announce those bids to the public. Different announcement

policies will result in different information updating, which may change players’ incentives

when they interact in the aftermarket, directly and indirectly affecting the mechanism de-

signer’s payoff.

Indeed, such considerations on aftermarket interactions have attracted ample attentions

in the auction literature. Das Varma [5] examines first-price auctions for a cost reducing

innovation bid by some oligopolists who will take part in aftermarket competition. The

firms are privately informed about the amount of their production costs that the innovation

can reduce. When the aftermarket competition is in Cournot style, there is a unique fully

separating equilibrium; if it is in Bertrand style, a fully separating equilibrium may fail

to exist. Goeree [6] examines first-price, second-price, and English auctions with abstract

aftermarket competitions and compares their revenues. Scarpatetti and Wasser [16] allow

multiple objects to be sold in the auctions. In Katzman and Rhodes-Kropf [9], what is

allocated through the auction is the access to a duopoly with an incumbent firm.1 The

above strand of literature examines certain specific games and characterizes their equilibria.

A natural next step, which is what we are taking in this paper, is to design an optimal

mechanism in the presence of possible aftermarket interactions.

In this paper, we adopt a mechanism design approach. This allows us to examine one

important issue that is not addressed in the above existing auction literature: how much

information (regarding the bidders’ bids) the auctioneer should reveal after the auction?

The usual assumption in the existing literature is that the auctioneer announces only the

transaction price (i.e., the highest bid in a first-price auction, or the second highest bid

in a second-price auction). The question is whether this is optimal for the auctioneer. In

1There is also a strand of literature which focuses on the case of complete information. This includes
Kamien et. al [7] and Katz and Shapiro [8].

3



theory, the auctioneer has many options. She can conceal all the information, reveal all

the information, reveal information stochastically or partially, etc. Obviously, it is almost

impossible to formulate all possible announcement rules one by one. Our paper considers all

possible rules for information revelation and characterizes the optimal one. We find that in

the optimal mechanism we will construct, full information revelation is the rule. This is a

positive property since sometimes it may be hard for auctioneers to conceal information or

to prohibit communications between the bidders.2 Our result shows that there is no need to

hide the information, and thus revealing all the information is revenue maximizing.

There could be many ways to model the aftermarket interactions. In this paper, we con-

sider a stylized environment where a mechanism designer (franchise company, government,

inventor, etc.) decides on how to sell an object (franchise, licence, patent, etc.) to a few

potential entrants with privately known production costs. The market is currently occu-

pied by an incumbent with a commonly known production cost. When a potential entrant

wins the object, the aftermarket interaction is modeled as a Cournot competition between

the winning entrant and the incumbent. When no potential entrant wins, the incumbent

remains a monopoly. We assume that the designer has full control in the primary mar-

ket and can determine the allocation rules, monetary transfers from the entrants, and how

much information to reveal to the aftermarket. In contrast, we assume that the designer

has only imperfect control in the aftermarket. For instance, the designer has no control

over the incumbent at all; she can neither collect money from the incumbent nor dictate its

production level in the aftermarket. Regarding the controlling power of the designer over

the winning entrant in the aftermarket, we consider two different scenarios: partial control

and no control, depending on whether the designer can dictate a production level for the

2For example, VoiceStream Wireless may be required by law to announce the purchasing price.
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winning entrant.3 For the franchise and licence cases, the partial control scenario is more

applicable. For the Voicestream Wireless and patent cases, it is more reasonable to assume

that Voicestream Wireless and the inventor have no control over T-mobile and the winning

firm, and therefore, the no control scenario is more applicable.

We are able to explicitly characterize the optimal mechanisms under general conditions

in both scenarios. In the partial control scenario, the constructed optimal mechanism is

deterministic. The designer is willing to allocate the object to an entrant only if its pro-

duction cost is lower than a cutoff, and this cutoff is increasing in both the market size and

the incumbent’s production cost. In this optimal mechanism, the designer fully reveals the

winning entrant’s reported private cost to the incumbent, and the revelation can be trans-

mitted through the winning entrant’s monetary transfer. The incumbent will infer exactly

the winning entrant’s production cost in the aftermarket competition. Notably, although we

model the aftermarket as a Cournot competition, i.e., the winning entrant and the incum-

bent choose production levels simultaneously, the outcome in the aftermarket is the same

as a modified Stackelberg competition under complete information with the winning entrant

being the leader. In the no control scenario, similar results hold, and the outcome in the

aftermarket coincides with a standard Cournot competition under complete information.

Entry happens less often and the designer achieves a strictly less revenue in the no con-

trol scenario than in the partial control scenario. In addition, in the no control scenario,

when there is a single potential entrant, it is never optimal for the designer to make a take-

it-or-leave-it offer to the entrant; meanwhile, when there are multiple symmetric potential

entrants, the optimal mechanism can be implemented by a first-price auction with a reserve

price and together with the announcement of the winning bid.

3The reason why we call the first scenario partial control is that the designer can only make decisions for
the winning entrant but not for the incumbent in the aftermarket.
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In our analysis, the designer faces a mechanism design problem with hidden information,

hidden actions and multiple agents, since the entrants have private production costs and

the production levels in the aftermarket are not fully dictated by the designer. Myerson

[14] establishes the revelation principle and formulates direct mechanisms under this general

setting, even though explicitly characterizing the optimal mechanism is nontrivial. McAfee

and McMillan [12] consider the optimal design of team mechanisms when players have pri-

vately known abilities and unobservable individual efforts in the team production.4 They

find that the designer can achieve the same revenue as if the moral hazard problem were not

present. In contrast, our paper illustrates that when the designer has imperfect control over

the aftermarket activities, her rent extraction ability is reduced even when the agents are

risk neutral.

Our paper is related to Molnar and Virag [13]. Their paper is more general than ours

in the sense that they also consider the case of Bertrand competition in the aftermarket.

Other than that, there are three main differences. First, the market structures are different.

In their paper, all firms participate in the primary market, while only entrants participate

in ours. Second, the approaches are different. They look for an optimal mechanism within

mechanisms with certain properties, while we utilize the revelation principle developed in

Myerson [14] and obtain an optimal mechanism among all feasible mechanisms. Third, their

analysis focuses on uniform distributions, while we can accommodate general distributions.

Our paper is related to the vast literature on regulation pioneered by Baron and Myerson

[2] who consider the optimal way to regulate a monopoly with private production cost.

Their analysis has been extended in various directions. For example, Blackorby and Szalay

4In the literature of optimal incentive contracts, McAfee and McMillan [11], and Laffont and Tirole [10]
characterize the optimal auction for a contract with privately informed agents who later choose unobservable
efforts. The focus of this literature is different from ours, since after the winning agent obtains the contract,
only he has to choose an action and there are no interactions among the players.
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[3] extends the model to accommodate two dimensional private information (production

cost and capacity). Auriol and Laffont [1] compare a regulated monopoly with a duopoly.

The regulation literature usually focuses on the role of private information. There is no

moral hazard problem as firms’ decisions are fully controlled by the regulator. While their

models are applicable in many environments, imperfect regulations may arise due to high

monitor costs and lack of essential information. Introducing moral hazard to these models

is technically challenging.

The rest of the paper is organized as follows. In Section 2, we describe the model. In

Section 3, we characterizes the optimal mechanism when the designer can dictate the winning

entrant’s production decision (i.e., the partial control scenario). In Section 4, we characterize

the optimal mechanism when the designer cannot dictate the winning entrant’s production

decision (i.e., no control scenario). In Section 5, we conclude.

2 The model

We consider the environment where a revenue maximizing designer decides how to sell an

object to I potential entrants in the primary market. After the primary market concludes,

the winning entrant, if any, interacts with an incumbent in the aftermarket. As discussed

extensively in the introduction, the designer does not always have perfect control over the

aftermarket. For instance, the designer can neither dictate the production level for the

incumbent nor collect monetary transfers from the incumbent. Regarding the entrant’s be-

havior in the aftermarket, we focus on two different scenarios. In the first scenario, the

designer can dictate the winning entrant’s decisions in the aftermarket. In the second sce-

nario, the designer cannot do so. We call the first scenario partial control since the designer
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has control of the entrant but not the incumbent, and the second one no control since the

designer cannot control the aftermarket at all.5 Although the designer cannot fully control

the aftermarket, she can nevertheless influence its outcome by revealing certain information

obtained in the primary market to the aftermarket. This changes the beliefs of the winning

entrant and the incumbent about each other, and therefore, affects their decisions in the

aftermarket. The question of how to optimally reveal the information to the aftermarket is

an important question we aim to address. This is also the focus of our technical analysis in

this paper.

In the primary market, the designer decides the allocation rules for the object, the en-

trants’ transfer payments, and the information to be revealed to the aftermarket. We assume

that the incumbent can observe which, if any, entrant obtains the object after the primary

market concludes. If no entrant wins the object, the incumbent behaves as a monopoly in

the aftermarket. Otherwise, the outcome in the aftermarket is determined by a Cournot

competition between the incumbent and the winning entrant, where they simultaneously

choose their production levels.

We assume that the winning entrant and the incumbent produce homogeneous product.

The inverse demand function for this product is characterized by linear function p = a− q,

where p denotes the market price, q denotes the total supply, and parameter a is a measure of

the market size. All firms have constant marginal production costs. For notational simplicity,

we assume that there is a single potential entrant. We will illustrate how to generalize the

model to any number of potential entrants in Section 5. Since the incumbent has been in

the market for a longer time than the entrant, the public has better information about the

incumbent. In particular, we assume that the incumbent’s production cost is commonly

5We can also study the case of full control. But it is less interesting, as it is similar to the standard
literature on regulation.
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known as cI . The entrant’s production cost CE follows a distribution with c.d.f. FE(cE),

p.d.f. fE(cE), and normalized support CE = [0, 1]. This CE is the private information of

the entrant. Let cE denote possible realizations of CE. We assume that the market size is

relative large so that both the incumbent and the winning entrant will produce a positive

amount in the aftermarket in the mechanisms we constructed. More specifically, we assume

Assumption 1 a > 3 max{1, cI}.

We assume that the reverse hazard rate function, fE(cE)
FE(cE)

, is strictly decreasing. In this paper,

without loss of generality, we normalize the designer’s reservation value of the object to zero.

We begin with the partial control scenario.

3 Partial control scenario

In the partial control scenario, the designer decides whether to allocate the object to the en-

trant, the payment from the entrant, as well as the level of production for the entrant and the

amount of information to be revealed to the aftermarket. She can neither ask for payments

from the incumbent nor dictate the incumbent’s production level in the aftermarket. The

designer’s problem is a mechanism design problem with hidden information (private cost for

the entrant), hidden actions (the incumbent’s private production level in the aftermarket)

and multiple agents. Formally, the designer offers a mechanismM→ R×∆({0, 1}×R+×Σ)

such that, when the entrant reports a message m ∈M, he pays tE(m) ∈ R and with density

ψ(x, qE, σ) the following happen; the entrant either enters (x = 1) or stays out (x = 0),

and the designer dictates a production level qE ∈ R+ for the entrant and reveals certain
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information σ ∈ Σ to the aftermarket.6

We make use of the revelation principle developed in Myerson [14] and [15] (Section

6.3) throughout our analysis and restrict our search of the optimal mechanism to direct

mechanisms without loss of generality. This revelation principle originally deals with discrete

types, but can be extended to continuous types by changing summations to integrals in

the derivations.7 We can thus replicate the outcome induced by any indirect mechanism

through a direct mechanism, where the message space is the type space and the information

is transmitted through recommendations on actions that are not controlled by the designer.

Specifically, a direct mechanism CE → R×∆({0, 1}×R+×R+) is such that when the entrant

reports his production cost cE ∈ CE to the designer, he pays tE(cE) ∈ R and with density

π(x, qE, qI |cE) the following happen; the entrant either enters (x = 1) or stays out (x = 0),

and the designer dictates a production level qE ∈ R+ for the entrant and sends a private

recommendation about the production level qI ∈ R+ to the incumbent. Note that when the

entrant stays out, there is no need to dictate a production level for the entrant. However,

for notational simplicity, we include qE in the probability function but let it be zero all the

time. The market price is derived from the inverse demand function upon the realizations

of the total outputs.

The designer chooses a mechanism (π(x, qE, qI |cE), tE(cE)) to maximize her revenue sub-

ject to a set of feasibility constraints. Note that the incumbent does not have private infor-

mation but does have private action, while the entrant has private information but no private

action. As a result, the incentive compatibility constraint for the incumbent (ICI) requires

that, given that the entrant truthfully reports his cost in the primary market and follows

6Since the entrant has quasi-linear preferences, monetary transfers matter only in terms of expectation.
Indeed, tE(m) can always be treated as the expected transfer.

7This is similar to Calzolari and Pavan [4] and Zhang and Wang [17], where the revelation principle is
utilized to analyze models with resale.
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the designer’s dictation in the aftermarket, the incumbent will be obedient and follow the

recommendations in the aftermarket. The incentive compatibility constraint for the entrant

(ICE) requires that, given that the incumbent follows the recommendations and the entrant

follows the designer’s dictation in the aftermarket, the entrant will report his cost truthfully

in the primary market.

The participation constraint for the entrant (PCE) requires that participating in the

mechanism is better than the outside option, which is normalized to zero. There is no need to

consider the participation constraint for the incumbent, since the designer can neither dictate

the production level nor collect any money from him. In fact, when the incumbent receives

the recommendation from the designer, he can always choose to ignore this information. As

a result, the incumbent’s participation constraint is always satisfied. Finally, π(x, qE, qI |cE)

must be a valid probability distribution: ∀qE ∈ R+, qI ∈ R+, x ∈ {0, 1}, cE ∈ CE,

π(x, qE, qI |cE) ≥ 0 and
∫
R+

∫
R+

1∑
x=0

π(x, qE, qI |cE) = 1. (1)

The designer needs to maximize her revenue, i.e., the expected monetary transfers from

the entrant, subject to feasibility constraints ICI , ICE, PCE and (1). In the following subsec-

tions, we will examine these constraints one by one, starting backward from the aftermarket.

The equilibrium concept we employ is perfect Bayesian Nash equilibria.

3.1 The aftermarket: establishing ICI

Consider on-the-equilibrium path continuation games where the entrant has reported his

production cost cE truthfully, and the designer carries out his commitment to implement

the mechanism (π(x, qE, qI |cE), tE(cE)). When the entrant stays out, i.e., x = 0, the only
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incentive compatible recommendation for the incumbent is the monopoly level qI = a−cI
2

.

Note that we set qE = 0 in this case although there is no need for the designer to dictate the

entrant’s production level.

When the entrant enters, i.e., x = 1, we can examine the Cournot competition in the

aftermarket. Since the entrant’s production level is dictated by the designer, we only need

to examine the incumbent’s incentive compatibility constraint in the aftermarket, i.e., ICI .

When the incumbent receives recommendation qI , the incumbent needs to choose a produc-

tion level q̃I to maximize his expected profit, i.e.,

max
q̃I≥0

∫
CE

∫
R+

{
[a− q̃I − qE − cI ] q̃I

}
π(x = 1, qE, qI |cE)fE(cE)dqEdcE (2)

There are two types of uncertainty in the incumbent’s payoff. First, the incumbent does not

know cE; second, conditional on cE, the incumbent does not know the realization of the en-

trant’s dictated production level qE. As a result, the incumbent needs to form a belief. The

information the incumbent has is that the entrant enters x = 1 and he receives recommen-

dation qI . The objective function (2) is strictly concave, and therefore, there exists a unique

maximum. In equilibrium, the incumbent should obey the designer’s recommendation, i.e.,

q̃I = qI , and the FOC yields the necessary and sufficient condition of the obedient condition

for the incumbent. Thus, we obtain the following lemma,8

Lemma 1 ICI is satisfied if and only if, ∀qI ,

qI =
a− cI −

∫
CE
∫
R+
qEπ(x = 1, qE, qI |cE)dqEdFE(cE)

2

8Here we assume that the FOC yields an interior solution. As to be shown later, Assumption 1 does
guarantee a positive production level for the incumbent in the optimal mechanism.
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3.2 The primary market: establishing ICE and PCE

Now we examine the primary market. Note that only the entrant has private information

and he is the only one who needs to report , i.e, ICE. When the entrant reports c̃E, the

designer will implement mechanism (π(x, qE, qI |c̃E), tE(c̃E)). The entrant anticipates that

the designer will keep her commitment and that the incumbent will be obedient. Note that

the entrant’s production level is dictated by the designer in the aftermarket. Also note that

the entrant earns a positive payoff only when he enters, i.e., x = 1. Therefore, knowing his

true cost cE, the entrant’s payoff by reporting c̃E is given by

UE(cE, c̃E) (3)

=
∫
R+

∫
R+

{[a− qI − qE − cE] qEπ(x = 1, qE, qI |c̃E)} dqEdqI − tE(c̃E).

The expectation is taken because the entrant does not know qE and qI when making decisions.

The incentive compatibility constraint ICE and participation constraints PCE imply that

UE(cE, c̃E) ≤ UE(cE, cE), ∀cE, c̃E (4)

UE(cE, cE) ≥ 0,∀cE (5)

As is common in the mechanism design literature, the envelope theorem yields

dUE(cE, cE)

dcE
= −

∫
R+

∫
R+

qEπ(x = 1, qE, qI |cE)dqEdqI

⇒ UE(cE, cE) =
∫ 1

cE

∫
R+

∫
R+

qEπ(x = 1, qE, qI |ξ)dqEdqIdξ + UE(1, 1) (6)
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The following lemma shows that ICE and PCE are equivalent to the following conditions.

The proof is standard and thus omitted.

Lemma 2 ICE and PCE are satisfied if and only if the following conditions hold. ∀cE ∈ CE,

tE(cE) =
∫
R+

∫
R+

[a− qI − qE − cE]qEπ(x = 1, qE, qI |cE)dqEdqI

−
∫ 1

cE

∫
R+

∫
R+

qEπ(x = 1, qE, qI |ξ)dqEdqIdξ − UE(1, 1), (7)

∫
R+

∫
R+

qEπ(x = 1, qE, qI |cE)dqEdqI is decreasing in cE (8)

UE(1, 1) ≥ 0 (9)

The first condition simply rewrites the envelop condition (6), the second one is the mono-

tonicity condition, and the third one is directly from PCE with cE = 1.

3.3 The designer’s problem

Lemma 1 characterizes the equivalent conditions for ICI ; Lemma 2 characterizes the equiv-

alent conditions for ICE and PCE. As a result, we can rewrite the designer’s problem

equivalently as

max
π(x,qE ,qI |cE),tE(cE)

∫
CE
tE(cE)dFE(cE) (10)
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subject to:

qI =
a− cI −

∫
CE
∫
R+
qEπ(x = 1, qE, qI |cE)dqEdFE(cE)

2
, (11)

tE(cE) =
∫
R+

∫
R+

[a− qI − qE − cE]qEπ(x = 1, qE, qI |cE)dqEdqI

−
∫ 1

cE

∫
R+

∫
R+

qEπ(x = 1, qE, qI |ξ)dqEdqIdξ − UE(1, 1), (12)

∫
R+

∫
R+

qEπ(x = 1, qE, qI |cE)dqEdqI is decreasing in cE (13)

UE(1, 1) ≥ 0 (14)

(1)

As is common in the literature, it is obvious that UE(1, 1) should be set to zero. Substituting

(11) and (12) into the objective function yields

RP

=
∫
CE
tE(cE)dFE(cE)

=
∫
CE


∫
R+

∫
R+

[a− qI − qE − cE]qEπ(x = 1, qE, qI |cE)dqEdqI

−
∫ 1
cE

∫
R+

∫
R+
qEπ(x = 1, qE, qI |ξ)dqEdqIdξ,

 dFE(cE) (by Eqn. (12))

=
∫
CE

∫
R+

∫
R+

[a− qI − qE − cE −
FE(cE)

fE(cE)
]qEπ(x = 1, qE, qI |cE)dqEdqIdFE(cE)
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=
∫
CE

∫
R+

∫
R+



 a− qE − cE − FE(cE)
fE(cE)

−
a−cI−

∫
CE

∫
R+

qEπ(x=1,qE ,qI |cE)dqEdFE(cE)

2

×
qEπ(x = 1, qE, qI)


dqEdqIdFE(cE) (by Eqn. (11))

=
∫
CE

∫
R+

∫
R+

[
a

2
+
cI
2
− qE − cE −

FE(cE)

fE(cE)

]
qEπ(x = 1, qE, qI |cE)dqEdqIdFE(cE)

+
1

2

∫
R+

∫
CE

∫
R+


∫
CE
∫
R+
qEπ(x = 1, qE, qI |cE)dqEdFE(cE)×

qEπ(x = 1, qE, qI |cE)

 dqEdFE(cE)dqI

=
∫
CE

∫
R+

∫
R+

[
a

2
+
cI
2
− qE − cE −

FE(cE)

fE(cE)

]
qEπ(x = 1, qE, qI |cE)dqEdqIdFE(cE)

+
1

2

∫
R+


∫
CE
∫
R+
qEπ(x = 1, qE, qI |cE)dqEdFE(cE)∫

CE
∫
R+
qEπ(x = 1, qE, qI |cE)dqEdFE(cE)

 dqI

≤
∫
CE

∫
R+

∫
R+

{[
a

2
+
cI
2
− qE − cE −

FE(cE)

fE(cE)

]
qEπ(x = 1, qE, qI |cE)

}
dqEdqIdFE(cE)

+
1

2

∫
R+

{ ∫
CE
∫
R+
q 2
E π(x = 1, qE, qI |cE)dqEdFE(cE)

}
dqI

=
∫
CE

∫
R+

∫
R+

[
a

2
+
cI
2
− qE

2
− cE −

FE(cE)

fE(cE)

]
qEπ(x = 1, qE, qI |cE)dqEdqIdFE(cE) (15)

The right hand side of the inequality corresponds to the situation where the entrant’s pro-

duction cost is fully revealed to the incumbent. For the right hand side of (15), point-wise

maximization can be applied. Conditional on cE, let us first consider the term

[
a

2
+
cI
2
− qE

2
− cE −

FE(cE)

fE(cE)

]
qE
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Since qE ≥ 0, this term is maximized by setting

qE = max{a
2

+
cI
2
− cE −

FE(cE)

fE(cE)
, 0}

As a result,

RP

≤
∫
CE

∫
R+

∫
R+

max

{
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)
, 0

}2

π(x = 1, qE, qI |cE)dqEdqIdFE(cE)

=
∫
CE

max

{
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)
, 0

}2 ∫
R+

∫
R+

π(x = 1, qE, qI |cE)dqEdqIdFE(cE)

≤
∫
CE

max

{
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)
, 0

}2 ∫
R+

∫
R+

1∑
x=0

π(x, qE, qI |cE)dqEdqI

 dFE(cE)

=
∫
CE

max

{
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)
, 0

}2

dFE(cE) (by Eqn. (1)) (16)

Note that the term a
2

+ cI
2
− cE − FE(cE)

fE(cE)
is strictly decreasing in cE, and is strictly positive

at cE = 0. We let ĉE be the point that the above term crosses zero if a
2

+ cI
2
− 1− 1

fE(1)
< 0,

and be 1 if a
2

+ cI
2
− 1− 1

fE(1)
≥ 0.

Define

JE(cE) =

[
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)

]2
(17)

It measures the marginal revenue of issuing the object to the entrant and fully revealing the

entrant’s production cost to the incumbent. Thus,

RP ≤
∫ ĉE

0
JE(cE)dFE(cE) (18)
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As a result, we have established an upper bound revenue for the designer. If we can con-

struct a feasible mechanism that achieves this upper bound revenue, then it will be an op-

timal mechanism. The following proposition shows that this upper bound revenue is always

achievable.

Proposition 1 In the partial control scenario, the following mechanism maximizes the de-

signer’s expected revenue.

(i) Allocation rule and production decision for the entrant:

x =


1, if 0 ≤ cE ≤ ĉE;

0, if ĉE < cE ≤ 1;
(19)

qE =
a

2
+
cI
2
− cE −

FE(cE)

fE(cE)
if 0 ≤ cE ≤ ĉE (20)

(ii) Aftermarket production recommendation for the incumbent:

qI =


a−3cI+2cE+

2FE(cE)

fE(cE)

4
if 0 ≤ cE ≤ ĉE

a−cI
2

if ĉE ≤ cE ≤ 1
(21)

(iii) The entrant’s transfer payment to the designer:

tE(cE) =


[
a
2

+ cI
2
− cE − FE(cE)

fE(cE)

]2
−
∫ ĉE
cE

[
a
2

+ cI
2
− ξ − FE(ξ)

fE(ξ)

]
dξ if 0 ≤ cE ≤ ĉE

0 if ĉE ≤ cE ≤ 1
, (22)
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(iv) The designer’s revenue:

RP =
∫ ĉE

0
JE(cE)dFE(cE) (23)

Proof: It is easy to verify that the above mechanism generates the upper bound revenue.

We only need to prove that it satisfies the feasibility constraints. Since the aftermarket

production recommendation for the incumbent is a strictly decreasing function of cE, when

the entrant enters, the incumbent will infer exactly the entrant’s production cost. Thus, it

is straightforward to verify that ICI is satisfied. According to Lemma 2, for ICE and PCE,

we only need to verify the monotonicity condition (7), which is trivially satisfied. Therefore,

the proposed mechanism is feasible, and this completes the proof. Q.E.D.

There are many properties of this optimal mechanism, which are summarized in the

following corollaries. For example, whether to allocate the object to the entrant is a cutoff

rule, and the production levels in the aftermarket are in pure strategies. We have,

Corollary 1 The constructed optimal mechanism is deterministic.

The above corollary suggests that it is without loss of generality to focus on deterministic

mechanisms in search of the optimal mechanism. The is important, because as to be shown

in the no control scenario, it is easy and straightforward to lay out the model and the anal-

ysis with deterministic mechanisms, which suggests that solving the optimal deterministic

mechanisms will be a very useful first step in tackling similar problems. We examine the

cutoff ĉE and obtain some comparative statics.

Corollary 2 Entry happens more often when the market size is larger or when the incum-

19



bent’s production cost is higher.

Note that the designer can raise money only through the entrant. When a or cI is larger,

there are more profits to extract or the entrant is in a more advantageous position in the

aftermarket. Therefore, the designer is willing to let the entrant to enter more often. If we

examine Eqn. (21), it reveals that the recommendation to the incumbent is a one-to-one

mapping function of the entrant’s production cost when the entrant enters. This implies

that after the incumbent learns the recommendation from the designer, he will infer exactly

the entrant’s production cost. We thus conclude

Corollary 3 In the constructed optimal mechanism, the designer fully reveals the entrant’s

production cost to the incumbent.

The intuition is subtle for this corollary. When the entrant himself, instead of the designer,

can ex-ante commit how to reveal his information to the incumbent upon its realization,

according to Blackwell’s Theorem, it is beneficial to reveal all the information. The Black-

well’s theorem does not apply when it is the designer to decide how much information to

be revealed, since the designer’s payoff is not convex in the entrant’s distribution. However,

the designer has the same interest as the entrant since her revenue is raised only from the

entrant. Therefore, it is optimal for the designer to reveal the information on behalf of the

entrant.

If we examine the aftermarket production levels upon entry, i.e., (20) and (21), it can

be shown that this outcome is the same as a modified Stackelberg competition between

the entrant and the incumbent under complete information, where the entrant is the leader

and the incumbent is the follower. This is because the designer proposes mechanisms and

makes production decision on behalf of the entrant, and therefore, can have some first mover
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advantage. However, the leader’s cost is cE + FE(cE)/f(cE) instead of cE since the designer

has to give informational rent to the entrant.

Note that the monetary transfer function is a strictly decreasing function of cE and can

fully reveal the entrant’s private cost. As a result, upon seeing the transaction price for the

object, the incumbent will infer exactly the incumbent’s production cost. Thus, we have

Corollary 4 To implement the optimal mechanism in practice, the designer only needs to

announce the transaction price for the object to the aftermarket, and does not need to make

production recommendations.

4 No control scenario

In the no control scenario, the designer decides whether to allocate the object to the entrant

and the payment, and how much information to reveal to the aftermarket; she can neither

ask for payments from the incumbent nor dictate production levels for the incumbent nor

the entrant in the aftermarket. Again, the revelation principle allows us to focus on direct

mechanisms. As shown in the above section, the optimal mechanism is deterministic. This

also holds in the no control scenario. Instead of going through the general setup, we will

execute our analysis by focusing on the deterministic mechanisms, since it is much easier

and more intuitive to lay out the model with deterministic mechanisms. With deterministic

mechanisms, the only uncertainty in the model is the entrant’s production cost and we can

focus on its updating.

Formally, a direct deterministic mechanism CE → R×∆({0, 1})×R2
+ is such that when

the entrant reports his cost cE ∈ CE to the designer, he pays tE(cE) ∈ R, enters with proba-

bility xE(cE), and the designer sends private recommendations about the production levels
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qE(cE) ∈ R+ and qI(cE) ∈ R+ to the entrant and the incumbent in the Cournot competition

upon the entrant’s entry, respectively.9,10 Since the entry probabilities and recommendations

depend on cE, they are also signals of the entrant’s production cost.

The designer chooses a mechanism (xE, qE, qI , tE) to maximize her revenue subject to a

set of feasibility constraints. Note that the incumbent does not have private information.

The incentive compatibility constraint for the incumbent is only for the aftermarket (ICA
I ).

It requires that, given that the entrant truthfully reports his cost in the primary market and

follows the recommendation in the aftermarket, the incumbent will be obedient and follow the

recommendation in the aftermarket. The incentive compatibility constraint for the entrant

requires that, given that the incumbent follows the recommendation in the aftermarket,

the entrant will report his cost truthfully in the primary market and be obedient in the

aftermarket. We can break the entrant’s incentive compatibility constraints into two parts.

The first part (ICA
E ) is that, if the entrant has truthfully reported his cost in the primary

market, it is optimal for him to follow the designer’s recommendation in the aftermarket.

The second part (ICP
E ) is that, the entrant will truthfully report his cost in the primary

market given that he will behave optimally in the aftermarket. The participation constraint

for the entrant (PCE) is the same as in the partial control scenario. For the same reason,

there is no participation constraint for the incumbent. Finally, since there is only one object

to be allocated, the following additional condition must be satisfied:

0 ≤ x(cE) ≤ 1,∀cE (24)

The designer needs to maximize her revenue, i.e., the monetary transfers from the entrant,

9Here we actually allow more general mechanisms than deterministic mechanisms since the allocation
rule can be stochastic. The key is that the recommendations are deterministic.

10When the entrant stays out, there is no need to make any recommendation for the entrant, and the only
incentive compatible recommendation for the incumbent is the monopoly level of output.
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subject to feasibility constraints ICA
I , IC

P
E , IC

A
E , PCE and (24).

In the following subsections, we will examine these constraints one by one, starting back-

ward from the aftermarket. The equilibrium concept we employ is perfect Bayesian Nash

equilibrium. The no control scenario is technically more challenging than the partial con-

trol scenario. This is because the entrant has more ways to deviate by misreporting in the

primary market and disobeying the recommendation from the designer in the aftermarket

at the same time. In this case, it is usually hard to pin down a necessary and sufficient

condition for the entrant’s incentive compatibility constraint.

4.1 The aftermarket

4.1.1 The on-equilibrium-path continuation game: establishing ICA
I and ICA

E

Consider the Cournot competition in the aftermarket. Let us first examine the incum-

bent’s incentive compatibility constraint in the aftermarket, i.e., ICA
I . Along the on-the-

equilibrium-path continuation game where the entrant reports his production cost cE truth-

fully, the designer carries out his commitment and implements the mechanism (xE(cE), qE(cE), qI(cE), tE(cE)).

With deterministic mechanisms, from the prospective of the incumbent, the uncertainty in

his payoff in the Cournot competition only depends on the entrant’s production cost. Let

Q denote the image of qI(cE), i.e., all possible realizations of equilibrium recommendations

for the incumbent. For notational simplicity, we assume that the set Q is finite with N

elements, and therefore, Q = {q1I , · · · , qNI }.11 When the incumbent learns the entrant’s entry

and receives recommendation qnI , where n ∈ {1, · · · , N}, let gnI (cE) denote the p.d.f. of the

incumbent’s updated belief about the entrant’s production cost. Note that potentially many

11Later, it will be clear that this does not affect our results at all.
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different values of cE could lead to the recommendation qnI . We denote the set of production

cost cE that could lead to recommendation qnI as CnE = {cE : qI(cE) = qnI }.

We can now compute gnI (cE) explicitly. Since xE(cE) and qI(cE) are independent, the

incumbent can update separately. Observing that the entrant enters the market, the incum-

bent updates his belief about the entrant’s type to p.d.f.

h(cE) =
xE(cE)fE(cE)∫

CE xE(cE)fE(cE)dcE
(25)

Now the further information of recommendation qnI will lead to another updating. The

incumbent knows that any production cost in CnE can leads to recommendation qnI . As a

result, the incumbent updates his belief about the entrant’s type further to

gnI (cE) =
h(cE)∫

CnE
h(cE)dcE

(26)

The incumbent maximizes his expected profit using the above updated p.d.f :

max
q̃I≥0

∫
CnE

[a− q̃I − qE(cE)− cI ] q̃IgnI (cE)dcE (27)

Since the objective function is strictly concave, there exists a unique maximum. In equilib-

rium, the incumbent should obey the designer’s recommendation, i.e., q̃I = qnI , and the FOC

yields the obedient condition for the incumbent,

qnI = max

{
a− cI −

∫
CnE
qE(cE)gnI (cE)dcE

2
, 0

}
(28)

Now consider the entrant’s incentive compatibility constraint in the aftermarket, i.e.,
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ICA
E . Suppose the entrant’s cost cE is in CnI and he truthfully reports it to the designer. The

entrant anticipates that the incumbent will obey the designer’s recommendation to produce

qnI . There is no uncertain in the entrant’s payoff. As a result, the entrant maximizes his

expected payoff conditional on observing his own entry x = 1, his own production cost cE,

and recommendation qE(cE):

max
q̃E≥0

[a− qnI − q̃E − cE] q̃E (29)

Note that the objective function is strictly concave, and therefore, there exist a unique

maximum. In equilibrium, the entrant should obey the designer’s recommendation, i.e.

q̃E = qE(cE), and the FOC yields the obedient condition for the entrant: ∀cE ∈ CnE,

qE(cE) = max
{
a− cE − qnI

2
, 0
}

(30)

From (28) and (30), we can solve the incentive compatible recommendations for each

firm in the following lemma.

Lemma 3 ICA
I and ICA

E are satisfied, if and only if ∀cE ∈ CnE, ∀n ∈ {1, · · · , N}

qnI =
a

3
− 2

3
cI +

EgnI

{
cE
}

3
(31)

qE(cE) =
a

3
+

1

3
cI −

cE
2
−

EgnI

{
cE
}

6
, (32)

where EgnI
{(·)} =

∫
CnE

(·)gnI (cE)dcE.
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Proof: We first focus on interior solutions. Substituting (30) into (28) yields

qnI =
a− cI − EgnI

{
a−qnI −cE

2

}
2

=
a− cI −

a−qnI −Egn
I

{
cE

}
2

2

⇔ qnI =
a

3
− 2

3
cI +

EgnI

{
cE
}

3
(33)

Substituting the above equation into (30) yields the formula for qE(cE). Note that with

Assumption 1, the solution is indeed an interior solution. Assumption 1 also guarantees that

this is the unique solution. Q.E.D.

4.1.2 A deviation

In order to determine the incentive compatibility constraints in the primary market, we need

to know when the entrant reports his valuation to be c̃E 6= cE, how he would act in the after-

market. In this case, he knows that the incumbent will obey the designer’s recommendation

and produce qI(c̃E). Therefore, the entrant’s problem in the Cournot competition is given

by:

max
q̃E≥0

[a− qI(c̃E)− q̃E − cE] q̃E (34)
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Note that the objective function is strictly concave, and therefore, there exists a unique

maximum, and the FOC yields,12

q̃E =
a− qI(c̃E)− cE

2
(35)

We thus have the following lemma.

Lemma 4 When the entrant reports c̃E in the primary market, he will choose a production

level a−qI(c̃E)−cE
2

in the aftermarket.

4.2 The primary market: Establishing ICP
E and PCE

Now we examine the primary market. Note that only the entrant has private information

and he is the only one who needs to report (ICP
E ). Given that the incumbent is obedient and

the entrant chooses the production level in the competition optimally according to Lemma

4, the entrant’s payoff by reporting c̃E is

UE(cE, c̃E)

=

{[
a− qI(c̃E)− a− qI(c̃E)− cE

2
− cE

]
a− qI(c̃E)− cE

2

}
xE(c̃E)− tE(c̃E)

=

[
a− qI(c̃E)− cE

2

]2
xE(c̃E)− tE(c̃E). (36)

The incentive compatibility ICP
E and participation constraints PCE imply that

UE(cE, c̃E) ≤ UE(cE, cE), ∀cE, c̃E (37)

12Assumption 1 guarantees that the solution is interior.
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UE(cE, cE) ≥ 0,∀cE (38)

As common in the mechanism design literature, the envelope theorem yields

dUE(cE, cE)

dcE
= 2

[
a− qI(c̃E)− cE

2

]
(−1

2
)xE(c̃E)

∣∣∣∣∣
c̃E=cE

= −qE(cE)xE(cE)

⇒ UE(cE, cE) =
∫ 1

cE
qE(ξ)xE(ξ)dξ + UE(1, 1) (39)

As a result, ICP
E and PCE imply the following lemma.

Lemma 5 ICP
E and PCE are satisfied only if the following conditions hold:

tE(cE) = qE(cE)2xE(cE)−
∫ 1

cE
qE(ξ)xE(ξ)dξ − UE(1, 1), (40)

UE(1, 1) ≥ 0 (41)

The first condition is simply a rewrite of (39), and the second is directly from PCE with

cE = 1.

4.3 The designer’s problem

Lemma 3 characterizes the equivalent conditions for ICA
I and ICA

E ; Lemma 5 characterizes

the necessary conditions for ICP
E and PCE. In contrast to the standard literature, a necessary

and sufficient condition for ICP
E and PCE cannot be obtained, and we cannot solve the

problem directly. Our approach is to study a relaxed problem of the original problem and
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work out the optimal mechanism there. We then prove that this mechanism is also feasible

in the original problem and is therefore optimal in the original problem. We can formulate

the relaxed problem as follows:

max
qI ,qE ,xE ,tE

∫ 1

0
tE(cE)dFE(cE) (42)

subject to:

qE(cE) =
a

3
+

1

3
cI −

cE
2
− 1

6
EgnI

{
cE
}
, (43)

tE(cE) = qE(cE)2xE(cE)−
∫ 1

cE
qE(ξ)xE(ξ)dξ − UE(1, 1), (44)

UE(1, 1) ≥ 0 (45)

0 ≤ xE(cE) ≤ 1 (46)

The reason why this problem is a relaxed problem of the original problem is as follows. First,

the object functions are the same. Second, the feasibility constraints are implied by those in

the original problem Lemma 3 and Lemma 5, and are therefore less restrictive. As a result,

the solution provides an upper bound revenue for the original problem.

As is common in the literature, it is obvious that UE(1, 1) should be set to zero. Substi-

tuting (43) and (44) into the objective function, the designer’s problem becomes

RN

=
∫
CE

[
qE(cE)2xE(cE)−

∫ 1

cE
qE(ξ)xE(ξ)dξ

]
dFE(cE) (byEqn. (44))

=
∫
CE

[
qE(cE)2xE(cE)− qE(cE)xE(cE)

FE(cE)

fE(cE)

]
dFE(cE)
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=
∫
CE

[
qE(cE)− FE(cE)

fE(cE)

]
qE(cE)xE(cE)fE(cE)dcE

=
N∑
n=1

∫
CnE



a
3

+ 1
3
cI − cE

2
−

Egn
I

{
cE

}
6

− FE(cE)
fE(cE)

×a
3

+ 1
3
cI − cE

2
−

Egn
I

{
cE

}
6

xE(cE)fE(cE)


dcE (by Eqn. (43))

=
N∑
n=1

∫
CnE



a
3

+ 1
3
cI − cE

2
−

Egn
I

{
cE

}
6

− FE(cE)
fE(cE)

×a
3

+ 1
3
cI − cE

2
−

Egn
I

{
cE

}
6

×
∫ 1
0 xE(cE)fE(cE)dcE

∫
CnE
h(cE)dcEg

n(cE)


dcE (by Eqn. (26))

=
N∑
n=1

∫ 1

0
xE(cE)fE(cE)dcE

∫
CnE
h(cE)dcE ×

×EgnI

{a
3

+
1

3
cI −

cE
2
−

EgnI

{
cE
}

6
− FE(cE)

fE(cE)

a
3

+
1

3
cI −

cE
2
−

EgnI

{
cE
}

6

}
︸ ︷︷ ︸

denoted as W

(47)

Let us first examine the function W .

W = EgnI

{[
a

3
+
cI
3
− cE

2
− FE(cE)

fE(cE)

] [
a

3
+
cI
3
− cE

2

]}

−
(

2

3
+

2cI
3

) EgnI
{cE}
6

+
EgnI
{cE}EgnI

{
cE + FE(cE)

fE(cE)

}
6

+
EgnI
{cE}EgnI

{cE}
36

(48)

We need the following lemma to proceed further.

Lemma 6 (Majorization Inequality) Suppose h′I(cE), h′E(cE) ≥ 0, then

E[(hI(cE)hE(cE)] ≥ E[hI(cE)]E[hE(cE)].

30



Therefore, according to the above Majorization Inequality, we obtain

W ≤ EgnI

{[
a

3
+
cI
3
− cE

2
− FE(cE)

fE(cE)

] [
a

3
+
cI
3
− cE

2

]}

−
(

2

3
+

2cI
3

) EgnI
{cE}
6

+
EgnI

{
cE[cE + FE(cE)

fE(cE)
]
}

6
+

EgnI
{cE2}
36

= EgnI

{[
a

3
+

1

3
cI −

cE
2
− cE

6
− FE(cE)

fE(cE)

] [
a

3
+

1

3
cI −

cE
2
− cE

6

]}

= EgnI

{[
a

3
+

1

3
cI −

2cE
3
− FE(cE)

fE(cE)

] [
a

3
+

1

3
cI −

2cE
3

] }
(49)

Hence,

RN ≤
N∑
n=1

∫ 1

0
xE(cE)fE(cE)dcE

∫
CnE
h(cE)dcE ×

×EgnI

{[
a

3
+

1

3
cI −

2cE
3
− FE(cE)

fE(cE)

] [
a

3
+

1

3
cI −

2cE
3

] }

=
N∑
n=1

∫ 1

0
xE(cE)fE(cE)dcE

∫
CnE
h(cE)dcE ×

×
∫
CnE


[
a
3

+ 1
3
cI − 2cE

3
− FE(cE)

fE(cE)

] [
a
3

+ 1
3
cI − 2cE

3

]
×

xE(cE)fE(cE)∫
CE

xE(cE)fE(cE)dcE
∫
Cn
E

h(cE)dcE

 dcE

=
∫
CE

{[
a

3
+

1

3
cI −

2cE
3
− FE(cE)

fE(cE)

] [
a

3
+

1

3
cI −

2cE
3

]}
xE(cE)fE(cE)dcE (50)

Note that the inequality following for any xE(cE), which means regardless of the allocation

rule, it is always the best to fully reveal the entrant’s production cost to the incumbent.
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Define

J̃E(cE) =

[
a

3
+

1

3
cI −

2cE
3
− FE(cE)

fE(cE)

] [
a

3
+

1

3
cI −

2cE
3

]
(51)

It measures the marginal revenue of issuing the object to the entrant and fully revealing

the entrant’s production cost to the incumbent. Note that the term a
3

+ 1
3
cI − 2cE

3
is always

strictly positive according to Assumption 1. The term a
3

+ 1
3
cI − 2cE

3
− FE(cE)

fE(cE)
is strictly

decreasing in cE, and is strictly positive at cE = 0. We let c∗E be the point that the above

term crosses zero if a
3

+ 1
3
cI − 2

3
− 1

fE(1)
< 0, and be 1 if a

3
+ 1

3
cI − 2

3
− 1

fE(1)
≥ 0. We thus

obtain

RN ≤
∫ c∗E

0
J̃E(cE)dFE(cE)

As a result, we have established an upper bound revenue for the designer. If we can construct

a feasible mechanism in the original problem that achieves this upper bound revenue, then

it should be an optimal mechanism. The following proposition shows that this upper bound

revenue is always achievable.

Proposition 2 The following mechanism maximizes the designer’s revenue.

(i) Allocation rule:

xE(vE) =


1, if 0 ≤ cE ≤ c∗E;

0, if c∗E < cE ≤ 1;
(52)
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(ii) Aftermarket production recommendations:

qI(cE) =
a− 2cI + cE

3
(53)

qE(cE) =
a+ cI − 2cE

3
(54)

(iii) The entrant’s transfer payment to the designer:

tE(cE) =


(
a+cI−2cE

3

)2
−
∫ c∗E
cE

(
a+cI−2ξ

3

)
dξ, if 0 ≤ cE ≤ c∗E;

0, if c∗E < cE ≤ 1;
, (55)

(iv) The designer’s revenue:

RN =
∫ c∗E

0
J̃E(cE)dFE(cE)

Proof: It is easy to verify that the above mechanism generates the upper bound revenue.

We only need to prove that it satisfies the feasibility constraints. Since the aftermarket

recommendation qI(cE) is a strictly increasing function, upon seeing the recommendation,

the incumbent will infer exactly the entrant’s production cost. Therefore, gnI is a degenerated

distribution at the true value of cE. Lemma 3 then confirms that ICA
I and ICA

E are satisfied.

Now consider ICP
E and PCE. When c̃E > c∗E,

UE(cE, c̃E) = 0 (56)
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When c̃E < c∗E,

UE(cE, c̃E) =

[
a− a−2cI+c̃E

3
− cE

2

]2
−
(
a+ cI − 2c̃E

3

)2

+
∫ c∗E

c̃E

a+ cI − 2ξ

3
dξ (57)

∂UE(cE, c̃E)

∂c̃E
= 2(−1

6
)

[
a− a−2cI+c̃E

3
− cE

2

]
− 2(−2

3
)
(
a+ cI − 2c̃E

3

)
− a+ cI − 2c̃E

3

= (−1

3
)
[
2a+ 2cI − c̃E − 3cE

6

]
+

1

3

(
a+ cI − 2c̃E

3

)

= −
[
2a+ 2cI − c̃E − 3cE

18

]
+
(

2a+ 2cI − 4c̃E
18

)

=
[−c̃E + cE

6

]
(58)

∂2UE(cE, c̃E)

∂c̃ 2
E

= −1

6
(59)

Thus, c̃E = cE is a maximum and truthfully reporting is optimal, i.e., ICP
E is satisfied. PCE

is satisfied since UE(1, 1) = 0. Q.E.D.

Similarly, we can summarize some properties of the optimal mechanism in some corollar-

ies. All of the corollaries in the partial control scenario continue to hold. In addition, the

outcome in the aftermarket is the same as if the entrant and the incumbent were in Cournot

competitions under complete information.

The following corollaries sum up some additional properties. When the designer has no

control over the aftermarket, a simple and popular mechanism is to make a take-it-or-leave-

it to the entrant. However, such mechanism will not be able to elicit all the information
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from the entrant. With the take-it-or-leave-it offer, the designer can only infer whether the

entrant’s production cost is above or below a cutoff instead of its exact value. As a result,

we have

Corollary 5 A take-it-or-leave-it offer can never be revenue maximizing for the designer.13

In both scenarios, entry happens only when the entrant’s production cost is lower than a

cutoff. If we compare the cutoffs in the two scenario, we obtain c∗E ≤ ĉE, which implies

Corollary 6 Entry happens more often under partial control than under no control.

The intuition is that when the designer has more control over the entrant, she can extract

more surplus from the entrant, and therefore, she is more willing to let the entrant to produce.

Furthermore, if we compare the revenues between the no control scenario and partial control

scenario, we obtain

Corollary 7 The revenue is strictly higher under partial control than under no control.

This is because when the designer has partial control, at least she can implement the same

mechanism that is optimal under no control. Comparing (23) and (56), we conclude that they

are not equal. It is easy to show that when the designer can also dictate a production level for

the incumbent, she can achieve even higher revenue, which is a standard regulation problem.

This suggests that the moral hazard problem does limit the designer’s rent extraction ability

even with risk neutral agents, in contrast to the previous literature such as McAfee and

McMillian [12].

13In the partial control scenario, the designer needs to choose the entrant’s production level, and it sounds
strange to mention take-it-or-leave-it offers. Obviously, a take-it-or-leave-it offer is not optimal in that
situation.
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5 Extension to I entrants

The restriction to a single entrant is only for expositional simplicity. The analysis can be

easily extended to allow I entrants. Here, we focus on the no control scenario, and the

partial control scenario is similar. The marginal revenue of allocating the object to entrant

i is simply J̃i(ci) by replacing subscript E to i in equation (51). Therefore, the designer

simply allocates the object to the entrant with the highest J̃i(ci) if it is positive. The

recommendations remain the same and the incumbent will infer the exact production cost

of the winning entrant in the aftermarket.

When I = 1, we have illustrated that the commonly observe mechanism, i.e., a take-

it-or-leave-it offer, is suboptimal. However, when I ≥ 2, the optimal mechanism can be

implemented by a simple and commonly adopted mechanism. Note that J̃i(ci) is strictly

decreasing when it is positive. Therefore, if the entrants are symmetric, it is in the designer’s

interest to allocate the object to the firm with the lowest cost, conditional on it is lower than

the cutoff c∗i . We thus have

Proposition 3 Under the no control scenario, when there are multiple symmetric entrants,

a first-price auction with a reserve price and the announcement of the transaction price

implements the optimal mechanism.

When the entrants adopt symmetric decreasing bidding function in the auction, the entrant

with the lowest cost wins. Furthermore, from the transaction price, the incumbent will infer

the winning entrant’s exact production cost, and the Cournot competition is as if under

complete information. In contrast, second-price auctions with the announcement of the

transaction price cannot implement the optimal mechanism, as the transaction price only

contains information about the second lowest production cost and the winner’s production
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cost remains uncertain.

6 Discussions and Conclusions

In this paper, we study the optimal mechanism design problem with aftermarket competition

in which the designer has perfect control of the primary market but not the aftermarket.

The designer sells an object (franchise, licence, etc) to entrants for operating in an industry

currently occupied by an incumbent. While the incumbent’s production cost is commonly

known, the entrants’ production costs are privately informed. We fully characterize the

optimal mechanisms for two scenario: partial control and no control. The optimal mechanism

are deterministic and the designer fully reveals the winning entrant’s production cost to the

incumbent under both scenarios. In addition, in the no control scenario, if there is a single

entrant, it is never optimal for the designer to make a take-it-or-leave-it offer to the entrant;

meanwhile, when there are multiple symmetric entrants, the optimal mechanism can be

implemented by a first-price auction with a reserve price and the announcement of the

winning bid. Entry happens more often and the designer can achieve strictly more revenue

in the partial control scenario.

The model can be extended in several directions. First, the incumbent may also have

private cost. Second, the aftermarket competition may not need to be Cournot competition.

Bertrand or Stackelberg competitions may be applicable for different industries. It would be

interesting to extend the model to accommodate a general abstract aftermarket competition

or even more general aftermarket interactions such as resale and collusion. While the current

paper illustrates that, under the assumptions of our paper, it is optimal to fully reveal infor-

mation to the aftermarket, one may ask whether this is true for any aftermarket interactions.
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The answer is negative. In Zhang and Wang [17], the aftermarket interaction is resale, and

it is found that fully concealing the information is optimal. It is thus a more subtle ques-

tion on how to reveal the information to the aftermarket in a general setup. Third, the

entire market structure could be modeled differently. For example, both the entrant and the

incumbent could interact in the primary market. Fourth, the regulation literature usually

assumes full controlling power by the regulator and no moral hazard problem. It would be

interesting to reexamine the same issues with imperfect regulator power in the presence of

moral hazard problem. Finally, the objective of the designer could be different from just

maximizing revenue. We leave these open questions to future investigations.
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