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Abstract

This paper studies the estimation of the marginal effect of one economic variable on

another in the presence of large amount of other economic variables—a problem frequently

faced by applied researchers. The estimation is motivated via model uncertainty so that

random components should be included to describe the economy according to the state of

the world. A condition named “Conditional Mean Independence” is shown to be sufficient

to identify the partial effect parameter of interest. In the case that the parameter of in-

terest can be identified in more than one approximating model, we propose two estimators

for such a parameter: generalized-method-of-moment-based model averaging partial effect

(gMAPLE) estimator and entropy-based model averaging partial effect (eMAPLE) estima-

tor. Consistency and asymptotic normality of the MAPLE estimators are established under

a suitable set of conditions. Thorough simulation studies reveal that MAPLE estimators

outperform factor based, variable selection based and other model averaging estimators

available in the literature. An economic example is taken to illustrate the use of MAPLE

estimator to evaluate the effect of inherited control on firms’ performance.
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1 Introduction

We live in a world full of valuable information recorded by thousands of economic and financial

variables. Economic researchers, policy makers and financial analysts are faced with these

overwhelming economic signals. In theoretical macroeconomics, agents are forced to process

all available quantities when they form expectations for future. In program evaluation, experts

incorporate individual features such as gender, education, marriage status, family size, health

status, etc. to analyze the treatment effect. In labor economics, newly available sources of data

are called forth to advance theory and inform policy. In finance, equity premium is studied

with thousands of financial variables, indices and macro policy variables.

This paper, to our knowledge, serves as the first work to study the marginal effect of one

variable on another in the large dimensional data setting, with the use of model averaging.

This problem is typical in any field of economics, since artistic economic theory would suggest

plenty of variables that would be potentially related to the variable of interest (Sala-i-Martin

et al 2006). When it comes to estimation of such partial effect, the omission of other variables

from the model would lead to biased estimate, fallible inference and result in misleading policy

recommendation. In the following subsections, we first make clear the problem of estimation

in the presence of large dimensional data, then review the related literature and finally spell

out the contributions of the paper.

1.1 Large Dimensional Data v.s. Small Models

With the advancement of computer technology, economic and financial data are more easily

collected, shared and utilized in studies. Resources for Economists on the Internet1 provides

a wide range of economic topics with links to many different data sources. National Bureau

of Economic Research2 provides links to various data sources including macro data, industrial

data, hospital data, demographic and vital statistics, patent and scientific papers data, and

so forth. Penn World Table3 provides purchasing power parity and national income accounts

converted to international prices for 188 countries for years 1950-2004. In finance and business,

Datastream by Thompson Financial4 and Wharton research Data Services5 provide researchers

worldwide with instant access to financial and marketing series. Yahoo6 and the Federal Reserve

Bank of St Louis maintain free data access to a wide variety of financial time series.

Economic models are introduced and estimated to analyze the linkage among economic vari-

ables and characterize the relationship of interest. With the principle of parsimony, researchers

usually start with small models that focus on salient features of economic phenomena. For

1 http://rfe.org/
2 http://www.nber.org/data/
3 http://pwt.econ.upenn.edu/
4 http://www.thomsonone.com/
5 http://wrds-web.wharton.upenn.edu/wrds/
6 http://finance.yahoo.com/
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example, Keynes (1936) hypothesized that the major influence on individual consumption is

personal income; Phillips (1958) and numerous work afterwards described an inverse rela-

tionship between money wage changes and unemployment in British economy; Mincer (1976)

studied the direction of labor mobility resulting from minimum-wage imposition; Ashenfelter

(1978) attribute current earning to past earnings and job training.

While these models are argued to explain economic phenomena, economists usually im-

plicitly or explicitly require the environment under investigation hold ceteris paribus. This

superiority is appreciated together with Occam’s Razor in all scientific exploration. However,

such a parsimony principle is better interpreted as a heuristic rather than an irrefutable prin-

ciple of logic (Gernert, 2007). It has been maintained in economic modeling for mainly two

reasons: First, analyzing the full model with all available economic variables would result in

difficulties in parameter identification, estimation and model evaluation, driving us astray from

the economic analysis originally designated.7 The second reason that leads to simple models is

that economics is more complex than it appears. Modeling methods available in mainstream

science aim to separate important linkage from abounded noisy signals. This intrinsic feature

limits inference in the presence of large data sets.

1.2 Related Literature

Dimensionality reduction techniques have been proposed and frequently used in forecasting

literature when large dimensional data are present.The first line of research assumes that the

data is generated by some underlying factors of smaller dimension and approaches the esti-

mation of the common factors in a way fitting the problem at hand.8 For recent work in this

direction, see Bai and Ng (2010) and references therein. Another direction to achieve dimen-

sionality reduction is variable selection. Selection is conducted by minimizing some objective

loss functions, such as Akaike information criterion (AIC) or Bayesian information criterion

(BIC). Early examples are forward variable selection, backward selection and stepwise selec-

tion etc. (Miller 2002). More recently the literature is overwhelmed by more sophisticated

methods.9 See Fan and Lv (2010) for a review.

Though popular in forecasting literature, dimensionality reduction methods have their own

limitations when applying to partial effect estimation. In factor analysis, partial effect param-

7With advancement in fuzzy analysis, set identification and inference has achieved significant progress. In

economic applications, see Manski (1995, 2003, 2007), Imbens and Manski (2004), Santos (2011), Romano and

Shaikh (2008, 2010), to name a few. Inference with large dimensional data is still left open.
8Popular examples are Principal Component Analysis (PCA) invented by Pearson (1901), factor analysis

pioneered by Spearman (1904), Partial Least Square (PLS) developed by Wold (1966), Principal Covariate

Regression (PCovR) proposed by De Jong and Kiers (1992), Supervised Factor Model (SFM) introduced by Tu

and Lee (2011), and so forth.
9Examples include LASSO (Tibishirani 1996), SCAD (Fan and Li 2001), Elastic Net (Zou and Hastie 2005),

group LASSO (Zou 2006), bridge estimator (Huang, Horowitz and Ma 2008) and so on.
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eters are not estimated and factor loadings are hard to interpret. On the other side, variable

selection is mostly concerned only with the explanation of the dependent variable by choosing

a subset of regressors, but not with the estimation of the partial effect. The key variable whose

effect is of interest may be excluded from a variable selection procedure. Even though oracle

properties of variable selection procedures (e.g. Huang, Horowitz and Ma 2008) have been

established, these oracle properties do not provide a satisfactory answer in finite sample. First,

when the variable of interest is not selected, oracle selection procedure such as bridge estimator

would estimate the partial effect as zero. In this case, there is no way to do further inference

such as constructing confidence interval or testing for the partial effect. That is, variable se-

lection procedures would be over confident that the partial effect is zero when it is actually

not. Second, even when the variable of interest is kept after the model selection procedure,

the asymptotic distribution of the partial effect estimator depends on the true value of the

partial effect and thus hard to provide valid inference in finite sample. See Leeb and Pötscher

(2005, 2006, 2008abc, 2009), Pötscher (2009) and Pötscher and Schneider (2009, 2010) for

problems that involve inferences with model selection procedures. Theoretical investigation of

partial effect estimation with dimensionality reduction methods demands more effort before

they become the working force.

Statisticians have long noticed that “all models are wrong but some are useful” (Box, 1979).

This famous quote vividly describes a dilemma with which theoretical researchers are forced

to face: models are misspecified. Taken as granted, we’re in a position to estimate parameters

of interest in misspecified models. For example, program evaluation researchers are evaluating

the effects of the treatment with their misspecified model. The partial effect thus computed

potentially suffers from model misspecification bias. Macro policy makers are predicting the

effects of a counterfactual policy on the performance of economy, using a misspecified model.

The prediction is as accurate as the model itself. Luckily for researchers that are concerned with

partial effect parameters, potentially of low dimension, they are free of this misspecification

problem, as to be pointed out by this paper. We specify a condition under which researchers

who are interested in learning the partial effect parameters can well proceed with a misspecified

model. Nevertheless, the parameter of interest should be correctly identified within the model.

This is a big step, following White and Lu (2010), towards the estimation of economic sensible

parameters rather than some statistical projection coefficients. It is important to point out that

the identified partial effect parameters have the causal effect interpretation but the regression

coefficients do not (e.g., White and Chalak 2006, White and Lu 2010). In a word, classical

modeling and estimation approaches are contaminated with bias and new estimation techniques

are called upon to derive more efficient estimators. This paper suggests the use of model

averaging to achieve this aim.

Model averaging, advocated by Bates and Granger (1969), works as an alternative to the

factor approach or variable selection in the forecasting paradigm. Simple model averaging gains

a lot of popularity in financial market forecasts, for example, Rapach et al (2010). Recently,

Hansen (2007, 2008, 2009, 2010) proposed model averaging with Mallow’s criterion to select
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the combining weights, while Hansen and Racine (2011) proposed Jackknife model averaging.

Model averaging is shown to be promising in forecasting exercises due to at least three facts:

First, averaging reduces variances while incurring small bias. Whenever the bias is relatively

small compared to the variance reduction, model averaging performs better than individual

models in Mean Squared Error (MSE) sense. Secondly, individual models are likely to be

misspecified and exclude information that is incorporated in averaging models. This loss of

information potentially degrades the power of a single model. Thirdly, model uncertainty

is somehow reduced in averaging model attributing to the observation that it incorporates

individual models as special cases by properly assigning the weights, spanning a larger model

space and reducing the chance of misspecification.

However, the power of model averaging for parameter estimation has not been fully explored.

Hansen (2009) applied model averaging for parameter estimation in a structural break setting.

The idea of averaging estimator dates back to Breiman (1996), where a bootstrap method

is implemented together with model aggregating (bagging, hereafter).10 There is a large

literature on Bayesian Model Averaging (BMA).11 BMA takes a different perspective that the

parameter of interest is random rather than have a true value. A prior on the parameter is

required and a computing algorithm (e.g. MCMC) is needed to derive the BMA estimator. The

dependence of the results on the prior and the algorithm adopted usually weaken the conclusions

therefore arrived. More than often, convergence of the computing algorithms available (e.g.

Metropolis-Hastings, Gibbs sampler, or MC3, etc.) is hard to check in practice. See Hoeting

et al (1999) for more details about these challenges faced by Bayesian researchers.

1.3 Contributions

This paper contributes to the literature in the following regards: First, we lay out the conditions

that help to identify the partial effect parameter of interest in a large dimensional model.

We show that Conditional Mean Independence (CMI) is sufficient for this purpose. This

is a weaker condition than conditional independence used in White and Lu (2010). When

CMI does not hold, we state a weaker condition, Weak Conditional Mean Independence, that

identifies the partial effect parameter when the number of observation is large. CMI conditions

can be either implied by conditional independence (White and Chalak 2010, Su and White

2011) or easily checked using the nonparametric tests proposed by Li and Wang (1998) or

Hsiao, Li and Racine (2007). An information-based approach that is easy to implement is also

suitable to test CMI.12 We emphasize that such estimated coefficients would have economic

10Breiman (1996) shows that bagging estimator has a smaller MSE in the i.i.d. case for the the purpose of

prediction. Bulman and Yu (2002) establish the theoretical properties of bagging estimators, followed by Lee, Tu

and Ullah (2011ab) and Tu (2011a) that adopt bagging for constrained parameter estimation in nonparametric

setting.
11In economics, recent work on BMA includes Sala-i-martin et al (2004), Eicher et al (2009) and so on.
12See Tu (2011b) for more details.
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interpretation like causal effects only under identification. However, this identification issue

is often ignored by empirical researchers, especially those who experiment with including and

excluding explanatory variables till they get coefficient estimates agree with initial intuition.

Second, we consider the situation in which the parameter of interest can be identified in

more than one model. This is often the case when we have large dimensional data. We propose

two model averaging partial effect (MAPLE) estimators in this setting. One of the estimators

is generalized-method-of-moment based MAPLE (gMAPLE) and the other is entropy-based

MAPLE (eMAPLE). The estimators are constructed from model averaging point of view,

utilizing more than one model (potentially misspecified) to quantify such partial effect. They

utilize more information than partial effect estimator derived from each individual model.

Averaging in this way helps to wipe out the large bias lying in individual estimator and reduces

variances, especially in small sample.

The gMAPLE estimator is constructed through combining all the moment conditions spec-

ified by individual models. A GMM-like objective function is used to derive the gMAPLE

estimator. This estimator is different from the classical GMM estimator proposed by Hansen

(1982) in the sense that each model has its own unique parameters other than the common

partial effect parameter. This estimator looks similar to but differs from the GMM estimator

of Seemingly Unrelated Regression models because of the common partial effect parameter in

each model. gMAPLE estimator is the first attempt, as far as we know in the literature, to use

moment conditions of more than one model to conduction inference on parameters of interest,

while treating other parameters as pseudo ones.

The eMAPLE estimator is motivated from the Maximum Entropy point of view, i.e., to

maximize the uncertainty of the model and data that is consistent with the moment conditions

that identify the partial effect parameter. The main intuition is that the same set of data would

occur with different probability if they are generated from different models. We introduce the

concept of entropy of a model class in line with the classical notion of entropy of a random

variable. We similarly define the conditional and joint entropy between a model class and

random variables generated from that model class. Our eMAPLE estimator is constructed

such that the conditional entropy of the model class given the observations is maximized. That

is, the uncertainty of the model class is maximized given that the data is observed. Model

averaging with entropy-based weights opens a new area of Maximum Entropic Econometrics

(MEE). Other than estimating the probability of each observation in classical MEE, model

averaging raises the question of probability of each individual model, instead of assigning equal

probabilities. eMAPLE estimation is a novel statistical inference approach in that it introduces

model uncertainty and model averaging into the entropy paradigm for parameter estimation.

The inference based on the objective function (joint entropy) to construct confidence intervals

or testing restrictions for the parameters of interest is easy to carry out and often better

resembles the asymptotic results in finite sample than competing methods.

The third contribution of the paper is the theoretical study of the two MAPLE estimators.

We set up conditions under which our MAPLE estimators are consistent and asymptotically

5



normal. The conditions for gMAPLE estimator are similar to those in the GMM literature. The

conditions for eMAPLE estimator resemble those used in the Generalized Empirical Likelihood

(GEL) literature.13 Testing of nonlinear restrictions on the parameters is also considered.

We show that the Wald, Rao’s Score and Likelihood-ratio type tests based on our MAPLE

estimators are asymptotically chi-squared distributed.

The fourth contribution is the thorough simulation study conducted to compare various

partial effect estimators, including MMA, JMA, FOGLeSs etc.. Our gMAPLE and eMAPLE

estimator are shown to have appealing finite sample properties in various Data Generating

Processes, including factor model, large dimensional models, models with large number of ir-

relevant regressors and models with heterogeneous errors etc.. Evaluation measures including

Mean Squared Errors, Mean Absolute Errors, Bias, Variance, Inter Quantile Range are used

to compare the competing estimators. Our MAPLE estimators clearly stand out, especially in

small samples, and even achieve the oracle efficiency lower bound in MSE in some designs (true

design is small dimensional without heterogeneity, but with a large dimensional covariates).

We also conduct simulations to examine the performance of the MAPLE based test statis-

tics. Generally, these tests enjoy sizes closer to theoretical ones than other testing procedures

including, e.g., FOGLeSs based tests.

Finally, we illustrate the use of MAPLE estimator in an economic application to evaluate

the effect of inherited control on firm performance. We find that our MAPLE estimates confirm

earlier findings by Pérez-González (2006) and White and Lu (2010) that there is a negative

effect, i.e., firms with family related CEOs tend to underperform those with family unrelated

CEOs. However, confidence intervals constructed based on MAPLE estimators are much nar-

rower than those based on FOGLeSs estimator, which indicates the superority the proposed

approach.

Structure of the rest of this paper is planned as follows: Section 2 presents the model and

discusses the identification issues. Section 3 proposes the gMAPLE estimator, introduces the

concept of entropy of models in the presence of model uncertainty and proposes the eMAPLE

estimator. Section 4 presents the theoretical properties of the proposed MAPLE estimators.

Section 5 studies the finite sample properties, via simulation experiments, of our estimator

together with other competitors. Section 6 provides an illustration of our estimation approach

with the dataset of Pérez-González(2006) in the study of the impact of inherited control on firm

performance. Section 7 concludes and comments on future studies. All the technical proofs are

collected in the Appendix.

2 The Model and Identification Condition

In this section, we introduce the model with large dimensional data and illustrate with six

economic examples. We discuss the identification of the partial effect parameter of interest and

13See Kitamura (2006) for a review.
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present the key condition, Conditional Mean Independence (CMI), that serves for identification

purpose. Other approaches for identification are also discussed in a concise way. In the end,

We point out other related issues.

2.1 The Model

We present the model after introducing notations. Let y denote the n× 1 dependent variable,

x the n× 1 exogenous independent variable whose partial effect on y is of major interest, and

z the large dimensional independent variables.

Assumption A.1 (linearity):

yi = xτi β + zτi γ + εi , (i = 1, 2, · · · , n) (2.1)

where β is the partial effect vector of interest, γ is a large-dimensional coefficient vector and

εi is the disturbance term.

Assumption A.2 (α-mixing stationarity): The large dimensional vector stochastic process

{di}ni=1 ≡ {yi,xi, zi,wi}ni=1 is a stationary α-mixing process with mixing coefficients α (j)

satisfying
∑∞

j=1 j
2αε/(ε+2) (j) <∞ for 0 < ε ≤ 1, where wi is some instrumental vector.

Assumption A.3 (moment restriction): All the instruments are orthogonal to the con-

temporaneous error term: E (wik · εi) = 0, for all i and k (= 1, 2, · · · , dim(wi)).

Assumption RC (rank condition): E[wi ( xτi , zτi )] is finite with full column rank.

We comment on the strength of Assumption A and RC before presenting some economic

examples.

Remark A: Assumption A.1 assumes that the relationship between y and the covariates

is linear. As we see later on, we require that y be linear in unknown parameters. This

assumption is not restrictive and can be extended in various ways. However, we will maintain

this assumption only to clarify the presentation of our identification and estimation approach.

In addition, the model as specified does not contain an intercept term. This is not restrictive

either since a demean of the data would remove the intercept. We emphasize that the model

is structural in the sense that the parameters, e.g., β carry causal effect interpretation. More

than often, a low dimensional parameter such as β has economic policy implication but not

others contained in γ. Our inference is mainly concerned with β. Assumption A.2 is classical

since that certain type of nonstationary process can be made stationary via transformations

such as differencing or detrending. Dependence across observations is allowed by the α-mixing

condition. Assumption A.3 would meet since we include all possible explanatory variables in

the regression. Anything else that is not explained in the dependent variable should be due to

the pure random error term.

Remark RC: The rank condition is needed to identify all the unknown parameters, but often

fails when zi is of large dimension. This is especially the case for economic models, contrasted
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to statistical models, since all economic variables are closely intertwined. In the case that a

few economic variables are linearly dependent RC fails to hold. However, as argued earlier,

economists more than often are concerned with only the partial effect parameter, β, but not the

other coefficient vector γ. This observation is momentum since its implication is that we only

need focus on identification and inference on β. This alleviates the need for Assumption RC

and allows us to proceed with weaker condition such as Conditional Mean Independence. We

will introduce CMI for identification after presenting some economic examples that highlight

the importance of partial effect estimation in large dimensional data.

2.2 Examples

We briefly discuss some examples from macroeconomics, program evaluation and labor eco-

nomics.

Example 2.1 (Phillips Curve) The famous historical inverse relationship between the rate

of unemployment and the rate of inflation in the economy, usually termed as Phillips Curve

(Fisher 1926; Phillips 1958), has been the focus of macro economy since its birth. Yet this

is short run phenomena. A cursory analysis of U.S. inflation and unemployment data 1953-

92 reveals that there is no single curve that fits the data. However, this argument ignore the

fact that the macro economy has been evolving over time and factors such as technological

developments, institutional factors including macro policy are also affecting the curve. These

factors might prove to be important, but do not change the relationship between unemployment

rate and inflation rate. Therefore, the estimation of the Phillips Curve should incorporate other

macro variables.

Example 2.2 (Consumption Hypothesis) Keynes (1936) developed his theory of consump-

tion and detailed the relationship between consumption and income in his famous book “The

General Theory of Employment, Interest and Money” (Keynes, 1936). A function that relates

consumption and income is usually estimated and Keynes’ consumption theory is tested. The

marginal propensity to consume (MPC), i.e., the rate at which consumption changes as income

is changing, is the slope of the consumption function. According to Keynes, MPC should be

in between 0 and 1. However, a consumption function that only has income as an explanatory

cause suffers from potential misspecification bias. It bases consumption only on current income,

but neglects other factors that also have important effects. One such factor is future income,

which leads to Friedman’s (1957) Permanent Income Hypothesis.

Example 2.3 (Treatment Effect) Ashenfelter (1978) studied effect of training programs on

earnings where individual characteristics such as gender, race, past earnings together with train-

ing variable.
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Example 2.4 (Wage Equation) Kruger (1993) examined the role of computers on the wage

structure. A long list of variables such as gender, education, race, age, occupation, union

status, hours, marriage status, experience and region are considered as important factors when

studying the effect of computers on wage.

Example 2.5 (Inherited Control) Pérez-González (2006) used a large data set from 355

management transitions of publicly traded U.S. corporations to examine whether firms with

family related incoming chief executive officers (CEOs) underperform in terms of operating

profitability relatives to firms with unrelated incoming CEOs. 34 covariates are used including

firm size, firm’s past performance, board’s R&D expenditure, departing CEO’s separation con-

ditions and incoming CEO’s ownership, incoming CEO’s characteristics, together with 17 year

dummies. We will provide more analysis with this example in the empirical exercise in Section

6.

Example 2.6 (Economic Growth) Sala-i-Martin et al (2004) studied the determinants of

economic growth with 67 variables that correlate with economic growth with only 80 observa-

tions. This job would be in vain since we have a large number of unknowns compared to the

number of observations. However, growth economists are interested to know whether a particu-

lar variable, e.g., human capital, is a determinant of economic growth, in the presence of large

number of other covariates.

2.3 Identification and Conditional Mean Independence

In this subsection, we look into the identification issue of the partial effect parameter β. We

distinguish the identification problem for two cases: (i) when Assumption RC holds; and (ii)

when Assumption RC fails. It is to be shown that Assumption RC, together with Assumption

A.1, A.2 and A.3, are sufficient for β to be identified. When Assumption RC fails, a further

condition called conditional mean independence (CMI) is introduced to identify β. Tests to

verify CMI and lower level conditions that imply CMI are reviewed.

Note that under Assumption RC, E [wi ( xτi , zτi )] is of full column rank. The moment

restriction Assumption A.3 implies that,

E [wi (yi − xτi β − zτi γ)] = 0,

which is equivalent to

E [wi ( xτi , zτi )]

[
β

γ

]
= E (wiyi) . (2.2)

There is a unique solution to the above equation. This completes the identification of β.
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2.3.1 Conditional Mean Independence

If, on the other hand, Assumption RC fails, then E [wi ( xτi , zτi )] is singular. This leads to

multiple solutions of β in equation (2.2). Consequently, β is underidentified. We find the

following condition is needed for β to be identified.

Assumption CMI (conditional mean independence):

E
(
z2i |xi, z1i

)
= E

(
z2i |z1i

)
(2.3)

where z1i and z2i forms a partition of zi, i.e., zτi =
[
z1τi , z

2τ
i

]
,for i = 1, 2, · · · , n.

CMI condition is quite commonly adopted in the literature of parameter identification. A

similar form of CMI is used in Stock and Watson (2010, pp.232) to distinguish the role of

variables of interest and control variables. Under CMI, the coefficient of the variable of interest

is argued to have an interpretation of causal effect. In the case that z2i is univariate, tests of

Li and Wang (1998) and Hsiao, Li and Racine (2007) can be easily adjusted to verify CMI

condition. When z2i is multivariate, element-wise tests would apply.

Conditions stronger than CMI are, for example, conditional exogeneity and conditional

independence. They have been imposed by Hahn (1998, 2004), White and Lu (2010) and White,

Chalak and Lu (2010), to name a few, as major tools to study identification, treatment effect

and Granger-Causality. Su and White (2007ab) suggest tests of conditional independence that

are based on Hellinger metrics and empirical likelihood. White and Chalak (2010) provided

tests for conditional exogeneity. See White and Chalak (2010), Su and White (2008) and

references therein for details.

Lemma 2.7 β is identified under Assumption 1, 2, 3, and CMI.

The proof of Lemma 1 is given in Appendix A. More than often in economic modeling, we

will assume the existence of a partition of z such that Assumption CMI is satisfied. As a result

of Lemma 1, the partial effect parameter β is identified.

When the set of z contains a large dimensional data, it is possible that more than one

decomposition can be found such that (2.3) is satisfied. This is the case if z are linearly

dependent. In this circumstance, we have competing models that all can identify β according

to Lemma 1. However, each model will produce a different estimate of β, for a given sample

of observations. In practice, it is hard to tell which estimate is closer to the true value.

An average estimate that aggregate these estimated values can be constructed, with weights

inversely proportional to each individual variance. See White and Lu (2010) for example.

However, the construction of this estimate requires the knowledge of variance of individual

estimators. Estimates of the variance can be used in practice. Nevertheless, this estimation

procedure is deemed to be inefficient since the estimation of β takes into account different model

specifications one-at-a-time and that the variance estimates are usually not accurate in finite

sample. In the next section, we propose a model averaging estimator that could potentially

circumvent such difficulties and result in a more efficient estimator.
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Next we investigate the more interesting situation when there is no such partition of z such

that CMI holds. The direct consequence is that β is not identifiable. We consider two cases

(i) weak identification and (ii) no identification.

2.3.2 Weak Conditional Mean Independence

Assumption WCMI (weak conditional mean independence):

E
(
z2i |xi, z1i

)
= E

(
z2i |z1i

)
+ ηxi (2.4)

where z1i and z2i forms a partition of zi, i.e., zτi =
[
z1τi , z

2τ
i

]
,for i = 1, 2, · · · , n, and η is a

matrix of the same dimension as z2i , with Euclidean norm

||η|| = o
(
n−1/2

)
Under Assumption WCMI, β is weakly identified. As sample size increase, the dependence

of z2i on xi becomes weaker and weaker. In the limit, condition WCMI becomes condition CMI.

Therefore, β is identified in the limit. This type of condition has been used in Belloni, et al

(2011) to approximate the factor estimation.

Lemma 2.8 β is weakly identified (identified in the limit) under Assumption 1, 2, 3, and

WCMI.

When WCMI condition fails, β cannot be identified in any approximating models. This is

a more interesting case, since the true model cannot be approximated arbitrarily well as we

intend to. Our proposed estimator based on model averaging, tends to perform well for this

difficult case, as shown in our simulation results in Section 5.

Before we proceed, a few things should be noted in sequence. First, when β is not identi-

fied, estimators for β using methods such as OLS are not targeting the correct partial effect.

Inevitably, estimators are biased and their properties are hard to evaluate. In this circum-

stance, hardly any effort can be made towards the estimation of partial effect. Second, partial

identification approaches advocated by Manski (2003) could be employed when WCMI fails,

which is beyond the focus of this paper. Third, the estimation of β can be put into a general

framework in which conditional moment restrictions summarize the model information. These

restrictions take the form

E [g (yi,xi, zi;β, γ)] = 0, (2.5)

where g (yi,xi, zi;β, γ) has a known functional form, β is the partial effect parameter of interest

and γ is a vector of pseudo parameters. Note that first, g(·) may be derived from a nonlinear

model, thus it is not restricted to the model specified in (2.1). γ can also be an infinite

dimensional parameter such as a nonparametric function. Identifications of this type have

been studied by Chen, et al (2011). A separate paper is written to study estimation in this

semiparametric framework and leaves us to focus on the case when γ is the coefficient of Z.
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3 Model Averaging PartiaL Effect Estimation

3.1 Model Uncertainty and Moment Uncertainty

We motivate the estimation of partial effect from the point of view of model uncertainty. Model

(2.1) can be viewed as aggregated models from M with certain probabilities. For example, in

state s, the dependent variable is generated through the following equation,

yi = xτi β + zτi,sγs + εi,s (i = 1, 2, · · · , n) (3.1)

where zi,s is a subset of zi and γs denotes corresponding coefficient vector. Denote the above

model as Ms and denote a collection of such models as M. We emphasize that in (3.1), β is

identified via the CMI condition.

Ideally, if the observed data can be classified according to the state from which they are

generated, we can estimate the coefficients β and γ within each state via LS whenever it

applies. A second averaging procedure may be implemented after β̂s is computed in state s (=

1, 2, · · · , S) to derive a more efficient estimator β̂ using an auxiliary regression. See White and

Lu (2010) for such a construction via a pseudo regression of β̂s on β. Nevertheless, classification

of data into states is neither practical nor necessary. First, classification requires further

information and renders the estimation even more complex. Inference after data classification

or model selection raises challenging issues such as those in data snooping (White, 2000). See

Berk et al (2009) and Berk et al (2011) for recent studies on this issue. Second, entropy-based

inference is already suitable for this type of so-called ill-posed “inverse” problems. Partial

effect estimation of β amounts to estimating the model probability distribution p and model

coefficients β and γ. We present procedures that circumvent the classification difficulty as

notified and achieves the estimation objective.

To put the analysis in a general framework, we present the estimation of β from the model

information characterized by moment constraints in the form of (2.5). To facilitate the presen-

tation, we simplify our notations. Note that first, model (3.1) in state s can be summarized by

corresponding moment condition

E [gs (d; θ0)] = 0, (3.2)

where expectation is taken over random vector d = (y,x, z), with gs (·; ·) denoting the moment

restriction in Ms, and θ0 = (β, γ1, . . . γS) collecting all the unknown parameters in S models.

We emphasize that β is the partial effect parameter of interest that is identified in each model,

but not the projection coefficient vectors γs, s = 1, . . . S.

3.2 gMAPLE

Facing parameter estimation problems identified by moment conditions via (3.2), it is natural

to adopt the Generalized Method of Moment (GMM) approach proposed by Hansen (1982).

We present the GMM estimator in the current setting. Denote ḡs (d, θ) = 1
n

n∑
i=1

gs (di, θ) and
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ḡ (d, θ) = [ḡτ1 (d, θ) , . . . , ḡτS (d, θ)]τ . The one-step GMM estimator with a weighting matrix W

is defined as

θ̂gMAPLE = arg min
θ
ḡτ (d, θ)Wḡ (d, θ) . (3.3)

The solution to this convex minimization problem can be easily found through numerical meth-

ods.

We need some notation to proceed. Define ∇θgs (d, θ) = ∂gτs (d, θ) /∂θ, where ∂gτs (d, θ) /∂θ

is the transpose of ∂gs (d, θ) /∂θ. DenoteG (s, θ) = E [∇θgs (d, θ)] and V (s, θ) = E [gs (d, θ) gτs (d, θ)].

Define G (θ) = (Gτ (1, θ) , . . . , Gτ (S, θ) , )τ , V (θ) =diag(V (1, θ) , . . . , V (S, θ)) and use short

notation G = G (θ0), V = V (θ0), Ω = E [g (d, θ0) g
τ (d, θ0)]. Following the GMM literature

(see, e.g., Newey and McFadden, 1994), it is easy to establish the following theorem, under

suitable set of additional assumptions on the moment conditions (3.2).

Theorem 3.1 The GMM estimator defined in (3.3) has the following properties:

(a) θ̂gMAPLE
p→ θ0.

(b)
√
n
(
θ̂gMAPLE − θ0

)
d→ N

(
0, (GτWG)−1GτWΩWG (GτWG)−1

)
An efficient two-step GMM estimator can be derived based on a first step estimator θ̂gMAPLE1

that solves (3.3) by setting W = I, the identity matrix. The optimal weight matrix can be

shown to be Wopt = Ω−1 that can be consistently estimated by

Ŵopt =

[
1

n

n∑
i=1

g
(
di, θ̂gMAPLE1

)
gτ
(
di, θ̂gMAPLE1

)]−1
. (3.4)

Theorem 3.2 The GMM estimator defined in (3.3) with W = Ŵopt have the following prop-

erties:

(a) θ̂gMAPLE
p→ θ0.

(b)
√
n
(
θ̂gMAPLE − θ0

)
d→ N

(
0, I−1 (θ0)

)
, with I (θ0) = GτΩ−1G.

Note that (3.4) is a very large dimensional matrix in the current setting. Earlier results

(e.g., Altonji and Segal 1994) show that GMM estimator with estimated optimal weighting

matrix does not perform well in finite sample. The two-step optimal GMM can be even beaten

by the one-step GMM that uses the naive identity weighting matrix. In practice, iterative

GMM estimator and continuously updating GMM estimators can be used, see Hansen et al

(1996).
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3.3 eMAPLE

This section introduce entropy-based model averaging. We start by defining the entropy for

model uncertainty of a given class of models. We then extend this concept and account for

model uncertainty in the presence of random variables that are generated from the models.

Similar concepts, such as entropy, joint entropy and conditional entropy, exist in the entropy

literature, for example, as in Cover and Thomas (2006) or Golan et al (1996). However, to our

knowledge, it is the first time to define these concepts for random models.

3.3.1 Entropy

Imagine a world that is comprised of a finite number of states s = 1, 2, · · · , S. In each state,

the data generating process is described by a mechanism, called model. We denote M as

a collection of such models, i.e., M = {Ms : s = 1, 2, · · · , S}, where Ms describes the world

in state s. Each state of the world, s, is associated with a probability qs. We denote the

probability space by the simplex 4S =

{
q ∈ RS : qs ≥ 0,

S∑
s=1

qs = 1

}
.

Definition 3.3 Consider a class of models M = {Ms : s = 1, 2, · · · , S}, from which data are

generated with probability distribution q (M) = (q1, q2, · · · , qS) . The entropy that characterizes

the information uncertainty associated with M is defined as

H (q) = −
S∑
s=1

qs log qs,

where the convention 0 · log 0 = 0 is taken.

Here q (M) = (q1, q2, · · · , qS) is the the probability mass function of models M1, M2,· · · ,
MS that are contained inM. It is abbreviated as q whenever no confusion occurs. As defined,

H (q) is a measure of the amount of uncertainty in the probability mass q (M) that describes

the states of the world. It reaches a maximum when qs = 1/S, for all s = 1, 2, · · · , S, i.e., when

the probability is uniform. This definition is consistent with entropy of a discrete random

variable. See, for example, Cover and Thomas (2006) or Golan et al (1996) for more details.

Next, we extend the measure of uncertainty when there is an additional set of observations

from the potential class of models M. The following definition parallels that of joint entropy

of two random variables. Let a random vector D be defined on D.

Definition 3.4 The joint entropy H (M, D) of the model class M and the random vector

D with a joint distribution p (M,D) is defined as

H (M, D) = −
∑
M∈M

∑
d∈D

p (M,d) log p (M,d) (3.5)

= −E log p (M, D) .
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We further define the conditional entropy of a model class given a random vector as the

expected value of the entropies of the conditional distributions averaged over the conditioning

random vector.

Definition 3.5 The conditional entropy H (M|D) of the model class M given the random

vector D with a joint distribution p (M,d) is defined as

H (M|D) =
∑
d∈D

p (d)H (M|D = d) (3.6)

= −
∑
d∈D

p (d)
∑
M∈M

p (M |d) log p (M |D = d)

= −
∑
M∈M

∑
d∈D

p (M,d) log p (M |d)

= −E log p (M|D) .

Similarly, we can define the conditional entropy H (D|M) of the random vector D given

the model class M.

Definition 3.6 The conditional entropy H (D|M) of the random vector D given the model

class M with a joint distribution p (M,d) is defined as

H (D|M) =
∑
M∈M

p (M)H (D|M = M) (3.7)

= −
∑
M∈M

p (M)
∑
M∈M

p (d|M) log p (d|M = M)

= −
∑
d∈D

∑
M∈M

p (M,d) log p (d|M)

= −E log p (D|M) .

The following theorem shows that the difference between the joint entropy defined in (3.5)

and conditional entropy defined in (3.6) is the entropy of the conditioning random vector D.

Similar result holds if we switch the model class and the random vector.

Theorem 3.7 (Chain rule)

H (M, D) = H (M|D) +H (D)

= H (D|M) +H (M) .

Proof: The proof follows closely from that of Theorem 2.2.1 in Cover and Thomas (2006,

p.17).
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3.3.2 eMAPLE estimator

Instead of approximating the expectation in (3.2) with a simple sample average as in GMM,

we adopt
n∑
i=1

pisgs (di, θ0) = 0

where pis is defined as probability of observing di given that the model is Ms. That is, pis =

p (di|Ms), s = 1, . . . , S. Requirement of probability states that

pis ≥ 0 and
n∑
i=1

pis = 1, i = 1, . . . , n, s = 1, . . . , S.

For each parameter vector θ ∈ Θ, define the set of probability measures:

P (θ) ≡

{
p = (pτ1 , . . . , p

τ
S)τ :

n∑
i=1

pisgs (di; θ) = 0,

n∑
i=1

pis = 1, pτs = (pis) ≥ 0, s = 1, . . . , S.

}
.

(3.8)

and

Q (θ) ≡

{
q = (q1, . . . , qS)τ :

S∑
s=1

qs = 1

}
,

where qs = p (Ms), s = 1, . . . S. To estimate the probabilities, it is natural to consider the

following maximization problem,

max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D) , (3.9)

for each θ ∈ Θ. That is, we simultaneously select the conditional probabilities, pis, the prob-

ability of observing di given model Ms, and the marginal probability of model Ms, qs, to

maximize the missing information between the class of model M and the observed data. This

is the essential philosophy of maximum entropy econometrics.

To analyze directly the objective function in (3.9), ones needs to know the conditional en-

tropy of a model class for a given data set. This is a conceptual challenge, since we need begin

with the probability distribution of the model class for a given data set. This is exactly the dif-

ficulty researchers facing when model uncertainty presents, for example, in the Bayesian model

averaging methods. However, we will circumvent this difficulty in entropy-based approach. We

make use of the following theorem to rewrite the objective function.

Theorem 3.8 The solution in (3.9) solves

max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

−
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs.
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Proof. Note first that the joint entropy

H (M, D) = H (D|M) +H (M)

= −
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs

Therefore, we have

[p̂τ , q̂τ ]τ = arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (M|D) +H (D)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (D,M)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

H (D|M) +H (M)

= arg max
[pτ ,qτ ]τ∈P(θ)×Q(θ)

−
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs.

This completes the proof.

Lagrange multipliers can be used to solve (3.9). The Lagrangian is

L = −
S∑
s=1

n∑
i=1

qspis log pis −
S∑
s=1

qs log qs − µ

[
n∑
i=1

pis − 1

]

−
S∑
s=1

ητs

n∑
i=1

gs (di; θ) pis − ξ

[
S∑
s=1

qs − 1

]
, (3.10)

where µ, ητs and ξ are Lagrange multipliers.

In the appendix, we show that the solution to (3.9) are

q̂s =
1

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

) exp

(
−

n∑
i=1

p̂is log p̂is

)
, (3.11)

and

p̂is=
1

Υs (λs,θ)
exp [−λτsgs (di; θ)] (3.12)

where

Υs (λs,θ) =
n∑
i=1

exp [−λτsgs (di; θ)] , (3.13)

with λτs = ητs /q̂s, λ = (λτ1 , . . . , λ
τ
S)τ . In addition, each θ ∈ Θ, λ̂τs solves

n∑
i=1

gs (di; θ) exp
[
−λ̂τsgs (di; θ)

]
= 0, (3.14)
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for all s = 1, . . . , S.

We define the profile joint entropy (JE) at θ as

JE (θ) = −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is −
S∑
s=1

q̂s log q̂s

= log Υ (λ,θ) , (3.15)

where the last equality is show in the Appendix, with

Υ (λ,θ) =
S∑
s=1

Υs (λs,θ) =
S∑
s=1

n∑
i=1

exp [−λτsgs (di; θ)] ,

and λ = (λτ1 , . . . , λ
τ
S)τ .

Our entropy-based model averaging partial effect (eMAPLE) estimator of θ is thus defined

as

θ̂eMAPLE = arg max
θ∈Θ

JE (θ) (3.16)

= arg max
θ∈Θ

1

nS
exp {JE (θ)}

= arg max
θ∈Θ

1

nS
Υ (λ,θ)

= arg max
θ∈Θ

JEn (θ) ,

where

JEn (θ) =
1

nS
Υ (λ,θ) =

1

nS

S∑
s=1

n∑
i=1

exp [−λτsgs (di; θ)]

To implement our estimator, it’s easily seen that the λτs solving (3.14) can be alternatively

found as

λτs = arg max
ς∈Rdim(gs(x,θ))

Υs (ς,θ) ,

Note that this is a well-defined finite dimensional unconstrained convex maximization problem

that has a unique solution. Algorithms such as Newton-Raphson method can be easily applied.

Once λτs is solved as a function of θ, it can be substituted to (3.12) and (3.11), and consequently,

(3.16) can be solved easily through numerical methods.

3.4 Alternative methods

An alternative is to optimally combine the estimators of parameters common to all models via

an artificial regression (White and Lu, 2010). Denote the GLS estimator of β0 (parameter of

interest) from model s as β̃s (we suppress the dependence on sample size n) and that of θ0 as θ̃s.
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Denote β̃n =
[
β̃τ1 , . . . , β̃

τ
S

]τ
, θ̃n =

[
θ̃τ1 , . . . , θ̃

τ
S

]τ
and Λ a selection matrix such that β̃n = Λθ̃n.

A combined estimator of β0 can be formulated through the following regression,

√
nβ̃n =

√
nIβ0 + e, (3.17)

where the S dim (β0) × S dim (β0) matrix of artificial regressor I ≡ ι ⊗ Idim(β0), with ι being

the S × 1 vector of ones and Idim(β0) being the identity matrix of the same dimension as

β0, e ∼ N (0,Σ∗) is the artificial regression error with Σ∗ =
(
(ΛG)τ Ω−1ΛG

)−1
. The Feasible

Optimally combined GLS (FOGLeSs) estimator of White and Lu (2010) is defined as the FGLS

estimator of (3.17):

β̃∗n =
(
Iτ Σ̂∗−1I

)−1
Iτ Σ̂∗−1β̃n, (3.18)

where Σ̂∗ is a consistent estimator of Σ∗ and satisfies

√
n
(
β̃∗n − β0

)
d→ N

(
0,
(
IτΣ∗−1I

)−1)
.

Note that
(
IτΣ∗−1I

)−1
=
(
Iτ
(
(ΛG)τ Ω−1ΛG

)
I
)−1 ≥ Λ

(
GτΩ−1G

)−1
Λτ . FOGLeSs estima-

tor is not as efficient as optimal GMM estimator. We emphasize that, to implement FOGLeSs,

Σ̂∗ is needed to compute β̃∗n in (3.18).

However, it is important to explore our proposed entropy-based estimation approach for

the following reasons. First, the above two-step estimation procedures require the first step

consistent estimator of θ0, which will be used for the estimation of the optimal weighting

matrix. Inevitably, this would introduce finite sample bias for the second stage estimation.

Second, the weighing matrix (either is of large dimension whose accuracy is more than often a

concern when available data sample size is small.

4 Theoretical Properties

In this section, we present the theoretical properties of the eMAPLE estimator.

4.1 Consistency

We introduce some notations before stating the needed assumptions. Define ∇θgs (d, θ) =

∂gτs (d, θ) /∂θ, where ∂gτs (d, θ) /∂θ is the transpose of ∂gs (d, θ) /∂θ. DenoteG (s, θ) = E [∇θgs (d, θ)]

and V (s, θ) = E [gs (d, θ) gτs (d, θ)].

Assumption B.1 For each θ 6= θ0 there exists a sub classMθ ⊆M such that Pr(Ms ∈Mθ) >

0, and E {gs (d, θ)} 6= 0 for each Ms ∈Mθ.

Assumption B.2 E {supθ∈Θ ||gs (d, θ) ||m} <∞ for some m ≥ 8, for all s = 1, . . . , S.

Assumption B.3 For all s = 1, . . . , S,
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(i) θm → θ ∈ Θ =⇒ gs (d, θm)→ gs (d, θ) for almost every d;

(ii) E [supθ∈Θ ‖ ∂gs (d, θ) /∂θ′ ‖] <∞, for all s = 1, . . . , S.

(iii) supθ∈B

∣∣∣∂g(i)s (d, θ) /∂θ(j)
∣∣∣ ≤ r (d) , supθ∈B

∣∣∣∂2g(i)s (d, θ) /∂θ(j)∂θ(k)
∣∣∣ ≤ t (d) , w.p.1 for some

real valued functions r (d) and t (d) such that Edυ <∞ for some υ ≥ 4 and Et (d) <∞.

Assumption B.4 There is a closed ball around θ0, B, such that for all s = 1, . . . , S

(i) G (s, ·) and V (s, ·) are continuous w.p.1. on B.

(ii) inf(ς,s,θ) ς
′V (s, θ) ς > 0 and sup(ς,d,θ) ς

′V (s, θ) ς <∞ with θ ∈ B.

Assumption B.5 λs ∈
{
γ : ‖γ‖ ≤ an−1/m

}
for some a > 0 and m as in Assumption B.2.

Remark: Similar assumptions to the above ones are adopted in the EL literature (e.g.,

Kitamura, Tripathi and Ahn (2004)). Assumptions B.1 states that θ0 is identified jointly in

all S models. Assumption B.2 is needed to prove a Lemma C.1 in line with Lemma 3 of

Owen (1990) or Lemma D.2 of Kitamura, Tripathi and Ahn (2004). Assumption B.3 impose

regularity conditions on the moment function. Assumption B.4 imposes conditions on the first

derivative of the moment condition and the variance-covariance matrix. Assumption B.5 is a

technical assumption that leads to the asymptotic normality of e-MAPLE estimator.

Theorem 4.1 (consistency) Under Assumption A.1-3, B.1-4, e-MAPLE estimator is consis-

tent, i.e., θ̂eMAPLE →p θ0.

Proof : See the Appendix.

Remark: Theorem 4.1 shows that e-MAPLE estimator is consistent. The consistency comes

as a result of the moment conditions that identify θ0 (that includes β). We emphasize that

γs in θ0 is pseudo projection coefficient vector in model s and do not carry any economic

interpretation.

4.2 Asymptotic Normality

Theorem 4.2 (asymptotic normality) Under additional Assumption B.5,

√
n
[
θ̂eMAPLE − θ0

]
d→ N

(
0, J−1 (θ0) I (θ0) J

−1 (θ0)
)
,

where J (θ0) = GτV −1G, I (θ0) = GτV −1ΩV −1G.
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Proof : See the Appendix.

Remark: The theorem shows that, when there is no correlation among models in different

states, i.e., Ω = V , our e-MAPLE estimator θ̂eMAPLE is asymptotically efficient and it achieves

the asymptotic variance lower bound, GτΩ−1G, which is the expectation of the inverse of Fisher

information matrix averaged across states of the world. Note that this lower bound agrees the

variance of optimally weighted GMM estimator, where the optimal weight is used for each

individual model. When Ω 6= V , i.e., there is correlation among models in different states, the

e-MAPLE estimator agrees with the GMM estimator that adopts weighting matrix W = V .

This is suboptimal in the sense that it efficiently uses information of in each model only.

As pointed out earlier, e-MAPLE estimator avoids the estimation of the large dimensional

variance-covariance matrix, which makes it appealing in finite sample.

4.3 Hypothesis Testing

To construct tests of the possible nonlinear restrictions as follows:

H0 : R (θ0) = r, (4.1)

where r is a k ≤ m dimensional vector of constants and R (·) is a known parametric function.

Impose this restriction in the optimization of (3.16). Denote the constrained solution by θ̂c and

the Jacobian matrix of R evaluated at θ0 as A, which is assumed to be of full row rank. We

have the following theorem for the Wald, Rao’s Score, and Likelihood Ratio-like test statistics.

Theorem 4.3 Test statistics of the restrictions (4.1),

Waldn = n
[
R
(
θ̂
)
− r
]′ [

AÎ−1 (θ0)A
]−1 [

R
(
θ̂
)
− r
]
,

LMn = ng
(
d, θ̂c

)
V̂ −1ĜÎ−1 (θ0) Ĝ

′V̂ −1g
(
d, θ̂c

)
,

LRn = 2
[
JEn

(
θ̂
)
− JEn

(
θ̂c
)]

are asymptotically χ2
k, where V̂ , Ĝ, Î−1 (θ0) , Â, are consistent estimates of V,G, I (θ0) and

A.

Proof : The results follows from Theorem 3 and Amemiya (1985).

Remark: Tests based on g-MAPLE estimators can be similarly constructed, without any

difficulty. However, in practice, we recommend the LRn test based on e-MAPLE estimator

due to its easy implementation and nice finite sample properties as to be shown in the next

section.
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5 Finite Sample Investigations

In this section, we conduct simulation studies to examine the finite sample properties of e-

MAPLE estimator, with a comparison to other estimators available in the literature. We

include the ordinary least square estimator, Generalized Least Square (GLS) estimator with

perfect knowledge of heterogeneity function, Feasible GLS with knowledge of heterogeneity

functional form,1-step GMM (GMM1) estimator, 2-step optimal GMM (GMM2) estimator, the

FOGLeSs estimator of White and Lu (2010), LASSO estimator of Tibshirani (1996), the factor

based estimator of Galbraith etc (2010) and the Mallows model averaging (MMA) estimator

of Hansen (2007).

We perform sequentially five experiments for the investigation. We briefly describe our

experiments before presenting the details. The first experiment is to study the performance

in a factor model setting. The second experiment is look into the classical regression model

with a large number of covariates. The third experiment is to amplify the role of efficient

estimation in the presence of heterogeneous errors. The next experiment is to investigate

the effects of the irrelevant covariates with homogeneous disturbance, which is replaced by

heterogeneity in the last experiment. For all experiments considered, we consider sample size

n = 50, 100, 150, 200, 250 and replicate the process 1,000 times. The covariates are kept fixed

for each replication. The estimator of the parameter of interest, β, is the partial effect of x on

y. We report different criteria to evaluate estimators under investigation, including the Mean

Squared Error (MSE), the Mean Absolute Error (MAE), Squared Bias (Bias2), Variance (Var)

and Inter Quantile Range (IQR) over 1,000 replications.

5.1 Experiment 1: factor model

We first consider a factor model, in which all the observed covariates are generated from some

underlying factors fi, according to the following DGP.

DGP1 :


yi = xτi β + z′iγ + e1i,

Zi = f τi ξz + e2i,

xi = f τi ξx + e3i,

i = 1, ..., n. We consider nf = dim (fi) = 3 and generate fi from a multivariate normal

distribution with random mean vector and random covariance matrix. p = dim (zi) = 0.8n−2,

ξz is generated in a similar way as fi but is normalized to a unit vector. ξx is generated

from uniform U [0, 3]. We set β = [2, 3]′, and γ is generated from U [0, 0.3]. eji, j = 1, 2, 3, is

independent standard normal error.
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5.2 Experiment 2: regression model, case 1

We next consider the classical regression model that has a large dimensional observed covariates.

DGP2 : yi = xτi β + z′iγ + ei,

where xi and zi are generated from independent standard normal distribution. xi and zi of the

same dimension as those in DGP 1, and so are the values of β and γ. ei is the independent

standard normal error.

5.3 Experiment 3: regression model, case 2

While heterogeneity is more often the case than exception in economic data, we incorporate

such a feature into DGP3.

DGP3 : yi = xτi β + z′iγ + vmi · ei,

We generate xi, zi, β, γ and ei in the same way as in DGP2. We consider heterogeneity function

vmi for three different forms

v1i =
√
x21i + x21i

v2i =
√
x21i + 2x21i

v3i = exp
(
−x21i

)
5.4 Experiment 4: regression model, case 3

Note that in earlier experiments, the large dimensional covariate vector (xi, zi) are causal in

generating the dependent variable y. We next consider the case in which a large dimensional

irrelevant covariates are available.

DGP4 : yi = xτi β + z′1iγ + ei,

where Z1i is a subset of Zi. xi, Zi, β, γ and ei are generated in the same way as in DGP2.

5.5 Experiment 5: regression model, case 4

We further consider effects of heterogeneity in error term.

DGP5 : yi = xτi β + z′1iγ + umi · ei,
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where we consider three different form of heterogeneity,

u1i =
√
x21i + 2x21i,

u2i =
√
x21i + 5x21i,

u3i =
√
x21i + 5x21i + 2 cos (x1ix2i).

Table 4-21 present the simulation results for experiment 1-5. To save space, we only report

the squared bias and MSE for the estimators considered, with sample size 50 and 200. Other

simulation results resemble and are available from the author upon requests. The findings are

summarized as follows.

1. In experiment 1, factor estimator and MMA estimator suffer from huge bias. This leads

to its bad performance in MSE. FOGLeSs, GMM and eMAPLE estimator incur a small

bias but enjoy a big reduction in variance, as shown as their MSE are much smaller than

GLS estimator. Our proposed estimators are generally better than FOGLeSs estimator.

Lasso is very attractive in small sample, due to the correlation in the factors and the

regressors. However, it is much worse than MAPLE estimators when n = 200.

2. In experiment 2, MMA, JMA and LASSO estimators perform pretty well and even beat

the oracle GLS estimator. The advantage of MAPLE estimator becomes clear when

sample size is n = 200. MAPLE outperforms FOGLeSs estimator in all cases.

3. In experiment 3, when heterogeneity presents, the performance of the estimators consid-

ered is quite mixed. A smaller MSE of one parameter estimator is usually glued with a

larger MSE of the other parameter estimator. However, in the third heterogeneity case,

MAPLE estimators outperform others in small sample.

4. In experiment 4, we see the clear dominance of MAPLE estimators over other competing

ones. Especially, eMAPLE estimator is performing as if it is the oracle GLS estimator in

terms of MSE. All competitors perform quite close to GLS. LASSO becomes the worst

among all methods.

5. In experiment 5, the dominance of MAPLE estimator remains when heterogeneity exists.

Although they are not as good as the oracle GLS, but they are quite competing with the

FGLS. LASSO remains the worst among all competitor, but perform slightly better than

the naive OLS estimator.

5.6 Experiment 6: rejection probability

We consider to evaluate the size of the tests based on different estimators. We include GLS,

FOGLeSs, GMM and our eMAPLE estimators. For tests based on eMAPLE estimator, we
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only include the LR type test that is appealing in its computation. Other tests are based on

the usual t-test statistic. We consider the following data generating process.

DGP6-1 : yi = 2xi + z′1iγ + ei,

where z1i is generated in the same way as that in experiment 4. We report the results based

on 1000 replications for sample size n=50 and 200.

Table 1: Rejection Probability: Homogeneous Case

n = 50 n = 200

α 0.01 0.05 0.10 0.01 0.05 0.10

OLS 0.259 0.389 0.468 0.246 0.374 0.456

GLS 0.023 0.076 0.133 0.012 0.061 0.115

FOGLeSs 0.081 0.179 0.252 0.015 0.077 0.148

gMAPLE1 0.034 0.079 0.152 0.013 0.055 0.116

gMAPLE2 0.049 0.100 0.176 0.014 0.061 0.119

eMAPLE 0.027 0.075 0.132 0.013 0.053 0.115

We consider to evaluate the size of the tests. Table 1 presents the rejection probability

when there is no heterogeneity. Test based on eMAPLE estimator tends to outperform all

other competitors, including that based on oracle GLS estimator. Its rejection probabilities

are very close to their nominal levels for both sample sizes. FOGLeSs estimator suffers from

big size distortion.

To incorporate heterogeneity, we consider the following design,

DGP6-2 : yi = xτi β + z′1iγ + ui · ei,

with

ui = log
(
3x2i
)
.

The performance of eMAPLE estimator remains satisfactory in the presence of heterogene-

ity. Although there is a distortion when sample size is 50, it beats GLS estimator when sample

size becomes 200. FOGLeSs perform slightly better with heterogeneity, but still have serious

size distortion.

6 Empirical Illustration

We illustrate the use of MAPLE estimator in the study of the impact of inherited control on

firm performance. We adopt the data set that is originally analyzed by Pérez-González(2006)
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Table 2: Rejection Probability: Heterogeneous Case

n = 50 n = 200

α 0.01 0.05 0.10 0.01 0.05 0.10

OLS 0.240 0.366 0.455 0.249 0.386 0.463

GLS 0.017 0.068 0.126 0.013 0.040 0.086

FOGLeSs 0.124 0.235 0.306 0.030 0.090 0.153

gMAPLE1 0.034 0.103 0.166 0.013 0.057 0.111

gMAPLE2 0.044 0.125 0.194 0.015 0.052 0.114

eMAPLE 0.021 0.094 0.159 0.012 0.053 0.114

and subsequently examined by White and Lu (2010). Pérez-Gonzálezuses data from 335 man-

agement transitions of publicly traded U.S. corporations to examine whether firms with family

related incoming chief executive officers (CEOs) underperform in terms of operating profitabil-

ity relative to firms with unrelated incoming CEOs. In this application, x equals to 1 if the

incoming CEO is related to the departing CEO, to the founder, or to a large shareholder by

blood or marriage and otherwise it equals to 0. Operating return on assets (OROA) is used

as a measure of firm performance. y is the difference in OROA calculated as the three-year

average after succession minus the three-year average before succession. We direct detailed

data description to White and Lu (2010).

Following White and Lu (2010), we classify the covariates into firm size, firm’s past perfor-

mance, board characteristics, firm’s R&D expenditure, departing CEO’s separation conditions

and incoming CEO’s ownership, and incoming CEO’s characteristics. We follow White and

Lu (2010) to consider 5 model specifications that correspond to 5 states of the world. We

report the estimated weights and e-MAPLE estimate in TABLE 7, together with associated

the t-statistic. In TABLE 3, we include the estimator of White and Lu (2010) for comparison.

Table 3: Empirical results: Inherited control

FOGLeSs gMPL 1 gMPL2 eMPL

Estimate -0.0246 -0.0283 -0.0283 -0.0221

95% C.I. (-0.04409,-0.00510) (-0.04805,-0.00862) (-0.04606,-0.01057) (-0.03300,-0.01200)

95% C.I. length 0.03899 0.03943 0.03550 0.02100

eMAPLE model probability

0.1996 0.2001 0.2001 0.2003 0.1999

We find that all the estimates are negative and all 95% confidence intervals are to the left of
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zero. The implication is that the effect of inherited control on firm performance is significant.

This agree with the findings of White and Lu (2010) and Pérez-González(2006). A second

finding from Table 3 is that confidence interval based on our eMAPLE estimator is much

narrower than those based on FOGLeSs and gMAPLE estimators. Combined with findings in

our simulation results, the eMAPLE estimator provides more accurate inference analysis.

7 Conclusion and Future Work

This paper studies the estimation of marginal effect of one economic variable on another, in

the presence of large amount of other economic variables. The paper first points out that only

small dimensional partial effect parameters have economic policy implication and therefore

are economically sensible. Then we set up conditions to identify partial effect parameter of

interest in high dimensional structural model. Based on identification of the parameter of

interest, we consider the case that the partial effect parameter may be identified in more

than one model. I propose two new model averaging estimator to estimate the partial effect

estimator based on a GMM-like objective function and an entropy objective function. The

two estimators are termed as gMAPLE and eMAPLE estimators. Asymptotic properties of

MAPLE estimators are established under a suitable set of conditions. Simulation results show

that the MAPLE estimator outperform other competitors in finite sample. An application of

the MAPLE estimator to study the effect of inherited control on firm’s performance is carried

out to illustrate its use. We found that a negative effect does exist which is consistent with

earlier findings in the literature. The gain in using MAPLE estimator compared to FOGLeSs

is revealed through the shorter confidence interval length.

This paper opens directions for future studies in model averaging in numerous ways. It

emphasizes the estimation of parameter of interest in large dimensional model via identification

conditions and model averaging techniques. An information based test of the key identification

condition, conditional mean independence, is under investigation by the author. A second

direction is to apply MAPLE to study the determinants of economic growth following the

work of Sala-i-Martin et al (2004). MAPLE can also be extended to the nonparametric and

semiparametric models. the only challenge is the identification condition. As an alternative

to entropy based approach, empirical likelihood (Owen 1988, 1990, 1991) based approach can

be used for MAPLE as well. Moreover, information based variable selection and estimation is

another direction to extend the current paper.
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Appendix

A Proof of Lemmas

Proof of Lemma 2.7. Partition the coefficient of zi as γτi =[γτ1i, γ
τ
2i] corresponding to the

partition of zτi =
[
z1τi , z

2τ
i

]
.Under Assumption CMI,

E [yi|xi, z1i] = α+ xiβ + zτ1iγ1i + E [zτ2iγ2i|xi, z1i] + E [εi|xi, z1i]
= α+ xiβ + zτ1iγ1i + E [zτ2i|z1i] γ2i (A.1)

where E [εi|xi, z1i] = 0 due to strict exogeneity of the regressors. Note that (A.1) implies that

β is identified in the regression of yi on xi and z1i, with conditions as specified in Robinson

(1988).

Proof of Lemma 2.8. Similar to the proof of Lemma 1, under Assumption WCMI, we can

derive that

E [yi|xi, z1i] = α+ xi (β + η) + zτ1iγ1i + E [zτ2i|z1i] γ2i.
Thus (β + η) would be identified in the regression of yi on xi and z1i, with conditions as

specified in Robinson (1988). Since ||η|| = o
(
n−1/2

)
, with sample size gets large, Robinson’s

(1988) estimator of (β + η) will converge to β.

B Derivation of Some Equations

This Appendix provides derivation of equation (3.11), (3.12), (3.14), (3.15).

The FOCs of the Lagrangian in (3.10) are:

∂L

∂pis
= −q̂s log p̂is − q̂s − µ̂s − η̂τs gs (di, θ) = 0, (B.1)

∂L

∂qs
= −

n∑
i=1

p̂is log p̂is − 1− log q̂s − ξ̂ = 0, (B.2)

∂L

∂µs
=

n∑
i=1

p̂is − 1 = 0, (B.3)

∂L

∂ηs
=

n∑
i=1

p̂isgs

(
di; θ̂

)
= 0, (B.4)

∂L

∂ξ
=

S∑
s=1

q̂s − 1 = 0, (B.5)

∂L

∂θ
=

S∑
s=1

η̂τs

n∑
i=1

p̂is∇θgs
(
di, θ̂

)
= 0. (B.6)
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(i) Derivation of (3.11). From (B.2), we get

q̂s = exp

(
−

n∑
i=1

p̂is log p̂is − 1− ξ̂

)
.

Combined this equation with (B.5), it gives (3.11).

(ii) Derivation of (3.12). Using (B.1), It’s straightforward to show that

p̂is = exp

(
− q̂s − µ̂s − η̂

τ
s gs (di, θ)

q̂s

)
,

With normalization in (B.3), we have

p̂is =
exp

(
−q̂s−µ̂s−η̂τs gs(di,θ)

q̂s

)
∑n

i=1 exp
(
−q̂s−µ̂s−η̂τs gs(di,θ)

q̂s

)
=

exp
(
−η̂τs gs(di,θ)

q̂s

)
∑n

i=1 exp
(
−−η̂

τ
s gs(di,θ)
q̂s

)
=

1

Υs (λs,θ)
exp [−λτsgs (di; θ)] ,

with λτs = η̂τs /q̂s, and Υs (λs,θ) =
∑n

i=1 exp [−λτsgs (di; θ)]. This proves (3.12).

(iii) Derivation of (3.14). Plugging (3.12) into (B.4) results

n∑
i=1

gs (di; θ)

Υs (λs,θ)
exp [−λτsgs (di; θ)] = 0.

Since Υs (λs,θ) > 0, this leads to (3.14).

(iv) Derivation of (3.15). We show this results in two steps. (a) Note that

−
S∑
s=1

q̂s log q̂s = −
S∑
s=1

q̂s log


exp

(
−

n∑
i=1

p̂is log p̂is

)
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)


=

n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is

+

S∑
s=1

q̂s log

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)

=

n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is + log

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)
.
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Thus

JE (θ) = −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is −
S∑
s=1

q̂s log q̂s

= −
S∑
s=1

n∑
i=1

q̂sp̂is log p̂is +

n∑
i=1

q̂s

n∑
i=1

p̂is log p̂is + log

S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)

= log
S∑
s=1

exp

(
−

n∑
i=1

p̂is log p̂is

)
.

(b) Next,

−
n∑
i=1

p̂is log p̂is

= −
n∑
i=1

p̂is log
exp [−λτsgs (di; θ)]

Υs (λs,θ)

= λτs

n∑
i=1

p̂isgs (di; θ) +
n∑
i=1

p̂is log Υs (λs,θ)

= log Υs (λs,θ) ,

where we have used (B.4).

Putting (a) and (b) together leads to

JE (θ) = log

S∑
s=1

Υs (λs,θ) = log Υ (λ,θ) ,

which proves (3.15).

C Proof of Auxiliary Lemmas

Lemma C.1 Under Assumption B.1-5, supθ∈Θ,s=1,...,S,di |λ
τ
sgs (di; θ)| = op (1).

Proof. It follows from Lemma 3 of Owen (1990) or Lemma D.2 of Kitamura, Tripathi and

Ahn (2004).

Lemma C.2 Under Assumption B.1-5, supθ∈Θ ||λτs (θ)− V −1 (s, θ)Egs (d, θ) || = op (‖λs‖) .
Proof. By (3.14), λτs solves

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.
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By Taylor’s Theorem, there exists λ̄s lying between 0 and λs such that

0 =

n∑
i=1

gs (di; θ)

{
1− λτsgs (di; θ) +

(
λ̄τsgs (di; θ)

)2
2

}
.

Rearranging terms leads to

λs =

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1 n∑
i=1

gs (di; θ) /n+

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]
n∑
i=1

gs (di; θ)

(
λ̄τsgs (di; θ)

)2
2n

≡ l1 + l2,

where

l1 = V −1 (s, θ)Egs (d, θ) +
[
V̂ −1 (s, θ)− V −1 (s, θ)

]
Egs (d, θ) + V̂ −1 (s, θ)

[
n∑
i=1

gs (di; θ) /n− Egs (d, θ)

]
= V −1 (s, θ)Egs (d, θ) + op (1) ,

by Assumption B.2 and B.4, and

‖l2‖ =

∥∥∥∥∥∥
[

1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1∥∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gs (di; θ)

(
λ̄τsgs (di; θ)

)2
2n

∥∥∥∥∥
≤

∥∥∥V̂ −1 (s, θ)
∥∥∥∥∥∥∥∥

n∑
i=1

g2s (di; θ)

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
i=1

[
λ̄τsgs (di; θ)

]4∥∥∥∥∥
1/2

/n

≤
∥∥∥V̂ −1 (s, θ)

∥∥∥∥∥∥∥∥
n∑
i=1

g2s (di; θ)

∥∥∥∥∥
1/2

sup
∥∥∥[λ̄τsgs (di; θ)

]4∥∥∥
≤

∥∥∥V̂ −1 (s, θ)
∥∥∥∥∥∥∥∥

n∑
i=1

g2s (di; θ)

∥∥∥∥∥
1/2

sup
∥∥λ̄τs∥∥4 ‖gs (di; θ)‖4

≤
∥∥∥V̂ −1 (s, θ)

∥∥∥∥∥∥∥∥
n∑
i=1

g2s (di; θ)

∥∥∥∥∥
1/2

(sup ‖λs‖ ‖gs (di; θ)‖)4

= o (1) ,

by Cauchy-Schwartz’s inequality, Assumption B.2 and Lemma C.1.

Lemma C.3 Under Assumption B.1-5, supθ∈Θ ||∇θλτs (θ)− V −1 (s, θ)D (s, θ) || = op (1) .

Proof. By (3.14), λτs solves

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.
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Differentiating both sides with respect to θ gives

0 =
n∑
i=1

∇θgs (di; θ) exp [−λτsgs (di; θ)]

−
n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]∇θλτs (θ) gs (di; θ)

−
n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]λ
τ
s (θ)∇θgs (di; θ)

≡ l1 − l2∇θλτs (θ) + l3.

The proof is completed after showing that (i) supθ∈Θ ||l1/n−D (s, θ) || = op (1) ; (ii) supθ∈Θ ||l2/n−
V (s, θ) || = op (1) ;(iii) supθ∈Θ ||l3/n|| = op (1) and an application of triangular inequality.

We show (i) first. Note that

l1/n =
1

n

n∑
i=1

∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

n

n∑
i=1

∇θgs (di; θ) + op (1)

= D (s, θ) + op (1) ,

by Lemma C.1 and a Law of Large Numbers.

We then show (ii). It is easily seen that

l2/n =
1

n

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] gs (di; θ)

=
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ) + op (1)

= V (s, θ) + op (1) ,

by Lemma C.1 and a Law of Large Numbers.

Finally, we show (iii).

‖l3/n‖ =

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)]λ
τ
s (θ)∇θgs (di; θ)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)λ
τ
s (θ)∇θgs (di; θ)

∥∥∥∥∥+ op (1)

≤

∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)

∥∥∥∥∥ sup
θ∈Θ
‖λτs (θ)‖

∥∥∥∥∥ 1

n

n∑
i=1

∇θgs (di; θ)

∥∥∥∥∥+ op (1)

= op (1)

by Lemma C.1, Assumption B.3, B.4 and a Law of large numbers.
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D Proof of Main Theorems

Proof of Theorem 4.1.

Define JE0 (θ) = − 1
S

∑S
s=1Eg

τ
s (di; θ)V (s, θ)Egs (di; θ) ≡ − 1

S

∑S
s=1 hs (s, θ). By Theorem

4.1.1 of Amemiya (1985), to prove θ̂ →p θ0, we need only show that (i) JE0 (θ) is uniquely

maximized at θ = θ0 and (ii) supθ∈Θ |JEn (θ)− JE0 (θ)| →p 0.

We first prove (i). By Assumption B.1 and B.4, hs (s, θ) > 0 for any θ ∈ Θ\ {θ0}. However,

hs (s, θ0) = Egτs (di; θ0)V (s, θ0)Egs (di; θ0) = 0 by (3.2). Thus JE0 (θ) ≥ 0 with the unique

minimizer θ = θ0.

Next we show (ii). Applying Lemma C.2, write

n∑
i=1

λτs (θ) gs (di; θ) =
n∑
i=1

Egτs (di; θ)V
−1 (s, θ) gs (di; θ) + op (1) .

This leads to

|JEn (θ)− JE0 (θ)| =
1

S

∣∣∣∣∣
S∑
s=1

Egτs (di; θ)V (s, θ)Egs (di; θ)−
S∑
s=1

Egτs (di; θ)V
−1 (s, θ)

1

n

n∑
i=1

gs (di; θ) + op (1)

∣∣∣∣∣
=

1

S

∣∣∣∣∣
S∑
s=1

Egτs (di; θ)V (s, θ)

[
Egs (di; θ)−

1

n

n∑
i=1

gs (di; θ)

]
+ op (1)

∣∣∣∣∣
≤ 1

S

S∑
s=1

|Egτs (di; θ)V (s, θ) op (1) + op (1)| = op (1) ,

where we have used Assumption B.2, B.4 and a Law of Large numbers.

Proof of Theorem 4.2. Note that FOC of (3.16) is

∇θJEn

(
θ̂
)

= 0.

By Taylor’s Theorem, there exisit θ̄ lying between θ̂ and θ0, s.t.,

0 = ∇θJEn

(
θ̂
)

= ∇θJEn (θ0) +∇θθJEn
(
θ̄
) (
θ̂ − θ0

)
.

This leads to √
n
(
θ̂ − θ0

)
= −

[
∇θθJEn

(
θ̄
)]−1 [√

n∇θJEn (θ0)
]
.

We complete the proof by showing that (i)
√
n∇θJEn (θ0)→ N

(
0, 1

S2 I (θ0)
)

and (ii)−∇θθJEn
(
θ̄
)
→p

1
SJ (θ0) and an application of Slutsky’s Theorem.

(1) We first prove
√
n∇θJEn (θ0)→ N

(
0, 1

S2 I
−1 (θ0)

)
. Note first that by (3.14), λτs solves

n∑
i=1

gs (di; θ) exp [−λτsgs (di; θ)] = 0.
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Thus, we have

∇θJEn (θ0) =
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]

+
1

nS

S∑
s=1

n∑
i=1

λτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

λτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∇θgs (di; θ) exp [−λτsgs (di; θ)] + op (1)

≡ Û + op (1)

We need to show that n1/2Û → N
(
0, 1

S2 I (θ0)
)
.

Since exp [−λτsgs (di; θ)] = 1− λτsgs (di; θ) + op (1) by Assumption B.5. We have

n1/2Û = n−1/2
1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∇θgs (di; θ)

−n−1/2 1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∇θgs (di; θ)λ

τ
sgs (di; θ)

= n−1/2
1

S

S∑
s=1

n∑
i=1

(
1

n

n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∇θgs (di; θ) + op (1)

= n−1/2Û1 + op (1) .

Furthermore,

n−1/2Û1 =
1√
n

1

S

S∑
s=1

n∑
i=1

(
n∑
i=1

gτs (di; θ)

)[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1
∇θgs (di; θ) /n

=
1√
n

1

S

n∑
i=1


S∑
s=1

gτs (di; θ)

[
1

n

n∑
i=1

gs (di; θ) g
τ
s (di; θ)

]−1(
1

n

n∑
i=1

∇θgs (di; θ)

)
=

1√
n

1

S

n∑
i=1

{
S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ)

}
+ op (1)

≡ 1√
n

n∑
i=1

ζi

where

ζi =
1

S

S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ) .
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It is easily seen that ζi is an m.d.s. with variance

E [ζiζ
τ
i ] = E

{
S∑
s=1

gτs (di; θ)V
−1 (s, θ)G (s, θ)

}2

.

=
1

S2

S∑
s,t=1

Gτ (s, θ)V −1 (s, θ)E [gs (di; θ) g
τ
t (di; θ)]V

−1 (t, θ)G (t, θ)

=
1

S2
GτV −1ΩV −1G

(
=

1

S2
GτV −1G

)
≡ 1

S2
I (θ0) .

By a CLT for vector ergodic stationary m.d.s. (see, for example, Billingsley, 1961), we have

n1/2Û1 →d N

(
0,

1

S2
I (θ0)

)
.

(2) We then show that −∇θθJEn
(
θ̄
)
→p J (θ0). First,

−nS∇θθJEn (θ0) =
S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]∇θ [λτs (θ) gs (di; θ)]

+

S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

+
S∑
s=1

n∑
i=1

λτs (θ)∇θθgs (di; θ) exp [−λτsgs (di; θ)]

≡ u1 + u2 + u3.

We show that (i) ‖u1/n‖ = op (1), (ii) ‖u2/ (nS)− J (θ0)‖ = op (1), and (iii) ‖u3/n‖ = op (1).

We first show (i) ‖u1/n‖ = op (1).

‖u1/n‖ =

∥∥∥∥∥ 1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ) gs (di; θ) exp [−λτsgs (di; θ)]∇θ [λτs (θ) gs (di; θ)]

∥∥∥∥∥
≤ 1

S

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

∇θλτs (θ) gs (di; θ)∇θ [λτs (θ) gs (di; θ)]

∥∥∥∥∥+ op (1)

≤ 1

S

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

∇θλτs (θ)

∥∥∥∥∥
∥∥∥∥∥ 1

n

n∑
i=1

gs (di; θ)

∥∥∥∥∥
×

{∥∥∥∥∥ 1

n

n∑
i=1

[∇θλτs (θ)] gs (di; θ)

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)∇θgs (di; θ)

∥∥∥∥∥
}

+ op (1)

≤ op (1) ,
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by Assumption B.3, B.4 and Lemma C.1, C.2.

We next show (ii) ‖u2/ (nS)− J (θ0)‖ = op (1). Note that by Lemma C.3, we have

u2/ (nS) =
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) exp [−λτsgs (di; θ)]

=
1

nS

S∑
s=1

n∑
i=1

∇θλτs (θ)∇θgs (di; θ) + op (1)

=
1

nS

S∑
s=1

n∑
i=1

Gτ (s, θ)V −1 (s, θ)∇θgs (di; θ) + op (1)

=
1

S

S∑
s=1

Gτ (s, θ)V −1 (s, θ)

(
1

n

n∑
i=1

∇θgs (di; θ)

)
+ op (1)

=
1

S

S∑
s=1

Gτ (s, θ)V −1 (s, θ)G (s, θ) + op (1) ,

=
1

S
GτV −1G+ op (1) =

1

S
J (θ0) + op (1) .

by Assumption B.4 and a Law of Large Numbers.

Finally we show (iii) ‖u3/n‖ = op (1).

‖u3/n‖ =

∥∥∥∥∥ 1

n

S∑
s=1

n∑
i=1

λτs (θ)∇θθgs (di; θ) exp [−λτsgs (di; θ)]

∥∥∥∥∥
≤

S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)∇θθgs (di; θ)

∥∥∥∥∥+ op (1)

≤
S∑
s=1

∥∥∥∥∥ 1

n

n∑
i=1

λτs (θ)

∥∥∥∥∥
∥∥∥∥ 1

n
∇θθgs (di; θ)

∥∥∥∥+ op (1)

≤ op (1) ,

by Assumption B.4 and Lemma C.2.

36



References

Altonji, J. G., and Segal, L. M. (1996), “Small Sample Bias in GMM Estimation of Covariance
Structures,” Journal of Business and Economic Statistics, Vol. 14, 353-366.

Amemiya, T. (1985). Advanced Econometrics, Harvard University Press.

Ashenfelter, O. (1978), “Estimating the Effect of Training Programs on Earnings”, The Review
of Economics and Statistics, Vol. 60, No. 1, 47-57

Bai, J. and S. Ng (2010), “Instrumental Variable Estimation in a Data Rich Environment,”
Econometric Theory, 26:6, 1577-1606.

Bates, J. and C.W.J., Granger (1969), “The Combination of Forecasts,” Operations Research
Quarterly 20 (4): 451–468.

Belloni, A., V. Chernozhukov, and C. Hansen (2011), “LASSO Methods for Gaussian Instru-
mental Variables Models”, Working paper, MIT, Econ. Dept.

Berk, R., L., Brown, A., Buja, K., Zhang and L. Zhao (2011). “Valid Post-Selection Inference,”
Statistics Department, Wharton School, University of Pennsylvania, Discussion Paper.

Berk, R., L., Brown and L., Zhao (2009). “Statistical inference after model selection,” Journal
of Quantitative Criminology, 26, 217-236.

Billingsley, P. (1961), “The Lindeberg-Levy Theorem for Martingales,” in Proceedings of the
American Mathematical Society, Vol. 12, 788-792.

Box, G.E.P. (1979), “Robustness in the strategy of scientific model building,” in Robustness
in Statistics, R.L. Launer and G.N. Wilkinson, Editors. Academic Press: New York.

Breiman, L. (1996): “Bagging Predictors,” Machine Learning, 36, 105–139.
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Table 4: Squared Bias (×100): DGP 1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.01 0.01 580.45 2650.07 5672.03 7.25 2.69 10.66 10.66 11.01

θ2 0.00 0.00 0.00 1744.79 1353.36 2344.46 0.00 0.39 3.41 3.41 2.93

n= 200 θ1 0.00 0.00 0.00 5445.91 6859.52 7348.23 6.11 3.95 0.04 0.04 0.00

θ2 0.00 0.00 0.00 2910.09 7132.12 7690.01 6.04 10.69 2.22 2.22 1.69

Table 5: Mean Squared Error (×100): DGP 1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 4.12 4.12 4.12 581.03 2653.12 5672.88 7.57 3.07 10.70 10.70 11.06

θ2 0.91 0.91 0.91 1744.84 1354.10 2344.68 0.09 0.51 3.42 3.42 2.94

n= 200 θ1 0.56 0.56 0.56 5445.99 6859.71 7348.34 6.17 4.03 0.04 0.04 0.01

θ2 0.81 0.81 0.81 2910.28 7132.44 7690.17 6.10 10.77 2.23 2.23 1.70
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Table 6: Squared Bias (×100): DGP 2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.00 0.00 2.68 1.83 1.99 0.11 6.57 5.31 5.88 5.24

θ2 0.02 0.02 0.02 5.30 1.24 2.44 0.00 3.80 3.18 4.34 3.24

n= 200 θ1 0.00 0.00 0.00 0.09 0.04 0.13 0.04 0.00 0.17 0.22 0.17

θ2 0.01 0.01 0.01 2.98 0.76 0.78 0.02 0.13 0.19 0.07 0.18

Table 7: Mean Squared Error (×100): DGP 2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 7.64 7.64 7.64 5.11 5.83 5.25 6.75 10.01 7.75 8.57 7.68

θ2 7.05 7.05 7.05 7.24 4.71 4.95 4.06 6.94 5.14 6.44 5.20

n= 200 θ1 2.84 2.84 2.84 0.56 2.05 1.40 1.61 0.73 0.63 0.69 0.63

θ2 3.90 3.90 3.90 3.52 3.44 2.40 1.93 0.87 0.72 0.61 0.71

Table 8: Squared Bias (×100): DGP 3-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.02 0.03 10.83 5.26 8.19 0.79 9.20 11.18 12.13 11.22

θ2 0.01 0.00 0.00 0.83 5.46 9.23 1.30 16.25 17.73 18.64 17.76

n= 200 θ1 0.00 0.01 0.01 0.60 0.00 0.04 0.07 0.17 0.58 0.70 0.59

θ2 0.00 0.00 0.00 1.84 1.17 1.97 0.34 0.86 0.34 0.36 0.34
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Table 9: Mean Squared Error (×100): DGP 3-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 20.01 15.26 15.49 18.33 15.17 16.66 20.09 17.81 18.38 19.36 18.43

θ2 24.85 22.58 23.26 9.18 16.99 18.32 18.16 25.21 24.49 25.22 24.53

n= 200 θ1 4.43 3.79 3.80 2.45 2.76 2.20 3.10 2.22 2.43 2.59 2.43

θ2 5.48 4.99 5.04 3.63 4.78 4.71 4.27 3.00 2.29 2.40 2.28

Table 10: Squared Bias (×100): DGP 3-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.05 0.00 0.01 11.84 11.74 15.00 0.81 0.75 0.15 0.09 0.14

θ2 0.06 0.02 0.00 0.02 0.01 0.01 0.00 1.66 2.99 3.97 3.06

n= 200 θ1 0.00 0.00 0.00 17.70 2.58 5.97 0.99 13.76 15.75 15.57 15.72

θ2 0.00 0.00 0.00 1.49 0.24 0.39 0.07 1.81 1.95 2.17 1.95

Table 11: Mean Squared Error (×100): DGP 3-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 29.75 20.48 21.57 19.99 22.91 24.33 29.58 12.74 8.88 9.12 8.86

θ2 19.72 17.79 18.88 13.68 13.66 13.50 18.22 17.42 15.91 16.92 15.98

n= 200 θ1 8.22 6.85 6.91 20.19 6.60 9.03 5.94 16.60 18.22 18.06 18.20

θ2 7.70 6.31 6.37 4.76 5.26 4.56 5.83 5.66 5.24 5.49 5.24
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Table 12: Squared Bias (×100): DGP 3-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.00 400.00 0.00 3.15 1.33 0.16 0.18 0.06 0.19 0.09

θ2 0.00 0.01 900.00 13.22 13.36 12.29 0.08 0.08 0.10 0.01 0.09

n= 200 θ1 0.00 0.00 400.00 1.97 0.07 0.36 0.34 4.06 3.16 3.45 3.16

θ2 0.00 0.00 900.00 0.09 0.02 0.00 0.20 0.54 0.25 0.28 0.25

Table 13: Mean Squared Error (×100): DGP 3-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 3.32 2.47 400.00 0.10 4.62 1.84 1.79 0.56 0.17 0.35 0.20

θ2 1.88 1.26 900.00 13.59 13.95 12.61 1.18 0.86 0.47 0.50 0.48

n= 200 θ1 0.38 0.26 400.00 1.99 0.40 0.61 0.57 4.19 3.18 3.47 3.18

θ2 0.71 0.56 900.00 0.30 0.62 0.48 0.62 0.82 0.45 0.49 0.45

Table 14: Squared Bias (×100): DGP 4

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.00 0.00 0.05 0.01 0.01 0.16 0.25 0.14 0.11 0.14

θ2 0.00 0.00 0.00 0.04 0.08 0.08 0.26 0.27 0.16 0.12 0.16

n= 200 θ1 0.00 0.00 0.00 0.02 0.07 0.08 0.07 0.02 0.00 0.01 0.00

θ2 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.01 0.01 0.01
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Table 15: Mean Squared Error (×100): DGP 4

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 6.79 1.88 1.88 1.82 2.27 1.97 4.88 2.43 1.89 1.94 1.88

θ2 8.88 2.36 2.36 2.33 3.19 2.73 6.28 3.03 2.37 2.46 2.37

n= 200 θ1 2.30 0.53 0.53 0.56 0.62 0.61 1.15 0.60 0.53 0.54 0.53

θ2 2.21 0.60 0.60 0.58 0.64 0.61 1.11 0.71 0.59 0.60 0.59

Table 16: Squared Bias (×100): DGP 5-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.00 0.01 9.18 4.12 5.22 0.25 2.41 0.81 0.38 0.72

θ2 0.02 0.00 0.02 2.67 0.70 1.23 0.15 1.66 0.86 0.22 0.74

n= 200 θ1 0.00 0.00 0.00 0.04 0.08 0.12 0.09 0.04 0.01 0.02 0.01

θ2 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.06 0.01 0.00 0.01

Table 17: Mean Squared Error (×100): DGP 5-1

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 42.30 4.91 6.55 17.77 16.16 15.94 31.91 12.26 9.72 9.24 9.57

θ2 23.13 6.41 8.38 16.16 13.98 14.53 21.18 15.10 13.43 12.59 13.23

n= 200 θ1 8.22 1.24 1.28 2.53 2.66 2.67 4.48 2.73 2.48 2.49 2.48

θ2 7.70 1.64 1.65 3.27 3.48 3.47 5.54 3.41 3.30 3.30 3.30
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Table 18: Squared Bias (×100): DGP 5-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.01 0.01 0.02 0.06 0.16 0.54 0.12 0.01 0.01 0.01 0.01

θ2 0.00 0.01 0.04 6.99 11.86 20.58 0.18 0.09 0.20 0.25 0.19

n= 200 θ1 0.03 0.00 0.00 0.16 0.10 0.02 0.01 0.02 0.04 0.02 0.04

θ2 0.00 0.00 0.00 0.01 0.00 0.08 0.11 0.00 0.01 0.00 0.01

Table 19: Mean Squared Error (×100): DGP 5-2

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 106.66 9.44 21.20 26.45 29.91 27.52 78.98 24.91 25.06 20.46 24.38

θ2 140.79 14.21 21.09 67.04 68.65 88.93 143.22 40.32 50.58 43.07 50.53

n= 200 θ1 9.97 1.54 1.80 3.85 3.88 3.71 7.40 3.88 3.76 3.59 3.75

θ2 16.38 3.73 4.07 7.56 7.66 7.85 11.80 8.46 7.71 7.41 7.71

Table 20: Squared Bias (×100): DGP 5-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 0.00 0.04 0.06 0.26 0.16 0.04 0.22 0.27 0.05 0.00 0.05

θ2 0.26 0.01 0.00 0.14 1.29 3.39 0.67 0.05 0.04 0.00 0.04

n= 200 θ1 0.02 0.01 0.01 0.09 0.06 0.01 0.01 0.03 0.04 0.09 0.04

θ2 0.06 0.00 0.00 0.02 0.04 0.14 0.01 0.00 0.01 0.00 0.01
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Table 21: Mean Squared Error (×100): DGP 5-3

θ0 OLS GLS FGLS factor MMA JMA LASSO FOGLS gMPL1 gMPL2 eMPL

n= 50 θ1 71.76 19.48 25.39 22.83 27.98 25.91 66.38 29.01 24.19 25.02 24.21

θ2 108.90 22.82 27.67 27.68 35.08 35.65 84.66 33.65 28.85 30.36 28.88

n= 200 θ1 17.61 3.02 3.28 4.76 5.03 4.90 10.57 5.06 4.77 4.82 4.78

θ2 29.56 5.57 6.01 8.49 9.05 9.12 19.83 8.53 8.41 8.43 8.41
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